1 | /****************************************************************************
|
---|
2 | **
|
---|
3 | ** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
|
---|
4 | ** All rights reserved.
|
---|
5 | ** Contact: Nokia Corporation ([email protected])
|
---|
6 | **
|
---|
7 | ** This file is part of the QtGui module of the Qt Toolkit.
|
---|
8 | **
|
---|
9 | ** $QT_BEGIN_LICENSE:LGPL$
|
---|
10 | ** Commercial Usage
|
---|
11 | ** Licensees holding valid Qt Commercial licenses may use this file in
|
---|
12 | ** accordance with the Qt Commercial License Agreement provided with the
|
---|
13 | ** Software or, alternatively, in accordance with the terms contained in
|
---|
14 | ** a written agreement between you and Nokia.
|
---|
15 | **
|
---|
16 | ** GNU Lesser General Public License Usage
|
---|
17 | ** Alternatively, this file may be used under the terms of the GNU Lesser
|
---|
18 | ** General Public License version 2.1 as published by the Free Software
|
---|
19 | ** Foundation and appearing in the file LICENSE.LGPL included in the
|
---|
20 | ** packaging of this file. Please review the following information to
|
---|
21 | ** ensure the GNU Lesser General Public License version 2.1 requirements
|
---|
22 | ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
---|
23 | **
|
---|
24 | ** In addition, as a special exception, Nokia gives you certain additional
|
---|
25 | ** rights. These rights are described in the Nokia Qt LGPL Exception
|
---|
26 | ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
---|
27 | **
|
---|
28 | ** GNU General Public License Usage
|
---|
29 | ** Alternatively, this file may be used under the terms of the GNU
|
---|
30 | ** General Public License version 3.0 as published by the Free Software
|
---|
31 | ** Foundation and appearing in the file LICENSE.GPL included in the
|
---|
32 | ** packaging of this file. Please review the following information to
|
---|
33 | ** ensure the GNU General Public License version 3.0 requirements will be
|
---|
34 | ** met: http://www.gnu.org/copyleft/gpl.html.
|
---|
35 | **
|
---|
36 | ** If you have questions regarding the use of this file, please contact
|
---|
37 | ** Nokia at [email protected].
|
---|
38 | ** $QT_END_LICENSE$
|
---|
39 | **
|
---|
40 | ****************************************************************************/
|
---|
41 |
|
---|
42 | #include "qvector3d.h"
|
---|
43 | #include "qvector2d.h"
|
---|
44 | #include "qvector4d.h"
|
---|
45 | #include <QtCore/qmath.h>
|
---|
46 | #include <QtCore/qvariant.h>
|
---|
47 | #include <QtCore/qdebug.h>
|
---|
48 |
|
---|
49 | QT_BEGIN_NAMESPACE
|
---|
50 |
|
---|
51 | #ifndef QT_NO_VECTOR3D
|
---|
52 |
|
---|
53 | /*!
|
---|
54 | \class QVector3D
|
---|
55 | \brief The QVector3D class represents a vector or vertex in 3D space.
|
---|
56 | \since 4.6
|
---|
57 | \ingroup painting-3D
|
---|
58 |
|
---|
59 | Vectors are one of the main building blocks of 3D representation and
|
---|
60 | drawing. They consist of three coordinates, traditionally called
|
---|
61 | x, y, and z.
|
---|
62 |
|
---|
63 | The QVector3D class can also be used to represent vertices in 3D space.
|
---|
64 | We therefore do not need to provide a separate vertex class.
|
---|
65 |
|
---|
66 | \sa QVector2D, QVector4D, QQuaternion
|
---|
67 | */
|
---|
68 |
|
---|
69 | /*!
|
---|
70 | \fn QVector3D::QVector3D()
|
---|
71 |
|
---|
72 | Constructs a null vector, i.e. with coordinates (0, 0, 0).
|
---|
73 | */
|
---|
74 |
|
---|
75 | /*!
|
---|
76 | \fn QVector3D::QVector3D(qreal xpos, qreal ypos, qreal zpos)
|
---|
77 |
|
---|
78 | Constructs a vector with coordinates (\a xpos, \a ypos, \a zpos).
|
---|
79 | */
|
---|
80 |
|
---|
81 | /*!
|
---|
82 | \fn QVector3D::QVector3D(const QPoint& point)
|
---|
83 |
|
---|
84 | Constructs a vector with x and y coordinates from a 2D \a point, and a
|
---|
85 | z coordinate of 0.
|
---|
86 | */
|
---|
87 |
|
---|
88 | /*!
|
---|
89 | \fn QVector3D::QVector3D(const QPointF& point)
|
---|
90 |
|
---|
91 | Constructs a vector with x and y coordinates from a 2D \a point, and a
|
---|
92 | z coordinate of 0.
|
---|
93 | */
|
---|
94 |
|
---|
95 | #ifndef QT_NO_VECTOR2D
|
---|
96 |
|
---|
97 | /*!
|
---|
98 | Constructs a 3D vector from the specified 2D \a vector. The z
|
---|
99 | coordinate is set to zero.
|
---|
100 |
|
---|
101 | \sa toVector2D()
|
---|
102 | */
|
---|
103 | QVector3D::QVector3D(const QVector2D& vector)
|
---|
104 | {
|
---|
105 | xp = vector.xp;
|
---|
106 | yp = vector.yp;
|
---|
107 | zp = 0.0f;
|
---|
108 | }
|
---|
109 |
|
---|
110 | /*!
|
---|
111 | Constructs a 3D vector from the specified 2D \a vector. The z
|
---|
112 | coordinate is set to \a zpos.
|
---|
113 |
|
---|
114 | \sa toVector2D()
|
---|
115 | */
|
---|
116 | QVector3D::QVector3D(const QVector2D& vector, qreal zpos)
|
---|
117 | {
|
---|
118 | xp = vector.xp;
|
---|
119 | yp = vector.yp;
|
---|
120 | zp = zpos;
|
---|
121 | }
|
---|
122 |
|
---|
123 | #endif
|
---|
124 |
|
---|
125 | #ifndef QT_NO_VECTOR4D
|
---|
126 |
|
---|
127 | /*!
|
---|
128 | Constructs a 3D vector from the specified 4D \a vector. The w
|
---|
129 | coordinate is dropped.
|
---|
130 |
|
---|
131 | \sa toVector4D()
|
---|
132 | */
|
---|
133 | QVector3D::QVector3D(const QVector4D& vector)
|
---|
134 | {
|
---|
135 | xp = vector.xp;
|
---|
136 | yp = vector.yp;
|
---|
137 | zp = vector.zp;
|
---|
138 | }
|
---|
139 |
|
---|
140 | #endif
|
---|
141 |
|
---|
142 | /*!
|
---|
143 | \fn bool QVector3D::isNull() const
|
---|
144 |
|
---|
145 | Returns true if the x, y, and z coordinates are set to 0.0,
|
---|
146 | otherwise returns false.
|
---|
147 | */
|
---|
148 |
|
---|
149 | /*!
|
---|
150 | \fn qreal QVector3D::x() const
|
---|
151 |
|
---|
152 | Returns the x coordinate of this point.
|
---|
153 |
|
---|
154 | \sa setX(), y(), z()
|
---|
155 | */
|
---|
156 |
|
---|
157 | /*!
|
---|
158 | \fn qreal QVector3D::y() const
|
---|
159 |
|
---|
160 | Returns the y coordinate of this point.
|
---|
161 |
|
---|
162 | \sa setY(), x(), z()
|
---|
163 | */
|
---|
164 |
|
---|
165 | /*!
|
---|
166 | \fn qreal QVector3D::z() const
|
---|
167 |
|
---|
168 | Returns the z coordinate of this point.
|
---|
169 |
|
---|
170 | \sa setZ(), x(), y()
|
---|
171 | */
|
---|
172 |
|
---|
173 | /*!
|
---|
174 | \fn void QVector3D::setX(qreal x)
|
---|
175 |
|
---|
176 | Sets the x coordinate of this point to the given \a x coordinate.
|
---|
177 |
|
---|
178 | \sa x(), setY(), setZ()
|
---|
179 | */
|
---|
180 |
|
---|
181 | /*!
|
---|
182 | \fn void QVector3D::setY(qreal y)
|
---|
183 |
|
---|
184 | Sets the y coordinate of this point to the given \a y coordinate.
|
---|
185 |
|
---|
186 | \sa y(), setX(), setZ()
|
---|
187 | */
|
---|
188 |
|
---|
189 | /*!
|
---|
190 | \fn void QVector3D::setZ(qreal z)
|
---|
191 |
|
---|
192 | Sets the z coordinate of this point to the given \a z coordinate.
|
---|
193 |
|
---|
194 | \sa z(), setX(), setY()
|
---|
195 | */
|
---|
196 |
|
---|
197 | /*!
|
---|
198 | Returns the normalized unit vector form of this vector.
|
---|
199 |
|
---|
200 | If this vector is null, then a null vector is returned. If the length
|
---|
201 | of the vector is very close to 1, then the vector will be returned as-is.
|
---|
202 | Otherwise the normalized form of the vector of length 1 will be returned.
|
---|
203 |
|
---|
204 | \sa length(), normalize()
|
---|
205 | */
|
---|
206 | QVector3D QVector3D::normalized() const
|
---|
207 | {
|
---|
208 | // Need some extra precision if the length is very small.
|
---|
209 | double len = double(xp) * double(xp) +
|
---|
210 | double(yp) * double(yp) +
|
---|
211 | double(zp) * double(zp);
|
---|
212 | if (qFuzzyIsNull(len - 1.0f))
|
---|
213 | return *this;
|
---|
214 | else if (!qFuzzyIsNull(len))
|
---|
215 | return *this / qSqrt(len);
|
---|
216 | else
|
---|
217 | return QVector3D();
|
---|
218 | }
|
---|
219 |
|
---|
220 | /*!
|
---|
221 | Normalizes the currect vector in place. Nothing happens if this
|
---|
222 | vector is a null vector or the length of the vector is very close to 1.
|
---|
223 |
|
---|
224 | \sa length(), normalized()
|
---|
225 | */
|
---|
226 | void QVector3D::normalize()
|
---|
227 | {
|
---|
228 | // Need some extra precision if the length is very small.
|
---|
229 | double len = double(xp) * double(xp) +
|
---|
230 | double(yp) * double(yp) +
|
---|
231 | double(zp) * double(zp);
|
---|
232 | if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len))
|
---|
233 | return;
|
---|
234 |
|
---|
235 | len = qSqrt(len);
|
---|
236 |
|
---|
237 | xp /= len;
|
---|
238 | yp /= len;
|
---|
239 | zp /= len;
|
---|
240 | }
|
---|
241 |
|
---|
242 | /*!
|
---|
243 | \fn QVector3D &QVector3D::operator+=(const QVector3D &vector)
|
---|
244 |
|
---|
245 | Adds the given \a vector to this vector and returns a reference to
|
---|
246 | this vector.
|
---|
247 |
|
---|
248 | \sa operator-=()
|
---|
249 | */
|
---|
250 |
|
---|
251 | /*!
|
---|
252 | \fn QVector3D &QVector3D::operator-=(const QVector3D &vector)
|
---|
253 |
|
---|
254 | Subtracts the given \a vector from this vector and returns a reference to
|
---|
255 | this vector.
|
---|
256 |
|
---|
257 | \sa operator+=()
|
---|
258 | */
|
---|
259 |
|
---|
260 | /*!
|
---|
261 | \fn QVector3D &QVector3D::operator*=(qreal factor)
|
---|
262 |
|
---|
263 | Multiplies this vector's coordinates by the given \a factor, and
|
---|
264 | returns a reference to this vector.
|
---|
265 |
|
---|
266 | \sa operator/=()
|
---|
267 | */
|
---|
268 |
|
---|
269 | /*!
|
---|
270 | \fn QVector3D &QVector3D::operator*=(const QVector3D& vector)
|
---|
271 | \overload
|
---|
272 |
|
---|
273 | Multiplies the components of this vector by the corresponding
|
---|
274 | components in \a vector.
|
---|
275 |
|
---|
276 | Note: this is not the same as the crossProduct() of this
|
---|
277 | vector and \a vector.
|
---|
278 |
|
---|
279 | \sa crossProduct()
|
---|
280 | */
|
---|
281 |
|
---|
282 | /*!
|
---|
283 | \fn QVector3D &QVector3D::operator/=(qreal divisor)
|
---|
284 |
|
---|
285 | Divides this vector's coordinates by the given \a divisor, and
|
---|
286 | returns a reference to this vector.
|
---|
287 |
|
---|
288 | \sa operator*=()
|
---|
289 | */
|
---|
290 |
|
---|
291 | /*!
|
---|
292 | Returns the dot product of \a v1 and \a v2.
|
---|
293 | */
|
---|
294 | qreal QVector3D::dotProduct(const QVector3D& v1, const QVector3D& v2)
|
---|
295 | {
|
---|
296 | return v1.xp * v2.xp + v1.yp * v2.yp + v1.zp * v2.zp;
|
---|
297 | }
|
---|
298 |
|
---|
299 | /*!
|
---|
300 | Returns the cross-product of vectors \a v1 and \a v2, which corresponds
|
---|
301 | to the normal vector of a plane defined by \a v1 and \a v2.
|
---|
302 |
|
---|
303 | \sa normal()
|
---|
304 | */
|
---|
305 | QVector3D QVector3D::crossProduct(const QVector3D& v1, const QVector3D& v2)
|
---|
306 | {
|
---|
307 | return QVector3D(v1.yp * v2.zp - v1.zp * v2.yp,
|
---|
308 | v1.zp * v2.xp - v1.xp * v2.zp,
|
---|
309 | v1.xp * v2.yp - v1.yp * v2.xp, 1);
|
---|
310 | }
|
---|
311 |
|
---|
312 | /*!
|
---|
313 | Returns the normal vector of a plane defined by vectors \a v1 and \a v2,
|
---|
314 | normalized to be a unit vector.
|
---|
315 |
|
---|
316 | Use crossProduct() to compute the cross-product of \a v1 and \a v2 if you
|
---|
317 | do not need the result to be normalized to a unit vector.
|
---|
318 |
|
---|
319 | \sa crossProduct(), distanceToPlane()
|
---|
320 | */
|
---|
321 | QVector3D QVector3D::normal(const QVector3D& v1, const QVector3D& v2)
|
---|
322 | {
|
---|
323 | return crossProduct(v1, v2).normalized();
|
---|
324 | }
|
---|
325 |
|
---|
326 | /*!
|
---|
327 | \overload
|
---|
328 |
|
---|
329 | Returns the normal vector of a plane defined by vectors
|
---|
330 | \a v2 - \a v1 and \a v3 - \a v1, normalized to be a unit vector.
|
---|
331 |
|
---|
332 | Use crossProduct() to compute the cross-product of \a v2 - \a v1 and
|
---|
333 | \a v3 - \a v1 if you do not need the result to be normalized to a
|
---|
334 | unit vector.
|
---|
335 |
|
---|
336 | \sa crossProduct(), distanceToPlane()
|
---|
337 | */
|
---|
338 | QVector3D QVector3D::normal
|
---|
339 | (const QVector3D& v1, const QVector3D& v2, const QVector3D& v3)
|
---|
340 | {
|
---|
341 | return crossProduct((v2 - v1), (v3 - v1)).normalized();
|
---|
342 | }
|
---|
343 |
|
---|
344 | /*!
|
---|
345 | Returns the distance from this vertex to a plane defined by
|
---|
346 | the vertex \a plane and a \a normal unit vector. The \a normal
|
---|
347 | parameter is assumed to have been normalized to a unit vector.
|
---|
348 |
|
---|
349 | The return value will be negative if the vertex is below the plane,
|
---|
350 | or zero if it is on the plane.
|
---|
351 |
|
---|
352 | \sa normal(), distanceToLine()
|
---|
353 | */
|
---|
354 | qreal QVector3D::distanceToPlane
|
---|
355 | (const QVector3D& plane, const QVector3D& normal) const
|
---|
356 | {
|
---|
357 | return dotProduct(*this - plane, normal);
|
---|
358 | }
|
---|
359 |
|
---|
360 | /*!
|
---|
361 | \overload
|
---|
362 |
|
---|
363 | Returns the distance from this vertex a plane defined by
|
---|
364 | the vertices \a plane1, \a plane2 and \a plane3.
|
---|
365 |
|
---|
366 | The return value will be negative if the vertex is below the plane,
|
---|
367 | or zero if it is on the plane.
|
---|
368 |
|
---|
369 | The two vectors that define the plane are \a plane2 - \a plane1
|
---|
370 | and \a plane3 - \a plane1.
|
---|
371 |
|
---|
372 | \sa normal(), distanceToLine()
|
---|
373 | */
|
---|
374 | qreal QVector3D::distanceToPlane
|
---|
375 | (const QVector3D& plane1, const QVector3D& plane2, const QVector3D& plane3) const
|
---|
376 | {
|
---|
377 | QVector3D n = normal(plane2 - plane1, plane3 - plane1);
|
---|
378 | return dotProduct(*this - plane1, n);
|
---|
379 | }
|
---|
380 |
|
---|
381 | /*!
|
---|
382 | Returns the distance that this vertex is from a line defined
|
---|
383 | by \a point and the unit vector \a direction.
|
---|
384 |
|
---|
385 | If \a direction is a null vector, then it does not define a line.
|
---|
386 | In that case, the distance from \a point to this vertex is returned.
|
---|
387 |
|
---|
388 | \sa distanceToPlane()
|
---|
389 | */
|
---|
390 | qreal QVector3D::distanceToLine
|
---|
391 | (const QVector3D& point, const QVector3D& direction) const
|
---|
392 | {
|
---|
393 | if (direction.isNull())
|
---|
394 | return (*this - point).length();
|
---|
395 | QVector3D p = point + dotProduct(*this - point, direction) * direction;
|
---|
396 | return (*this - p).length();
|
---|
397 | }
|
---|
398 |
|
---|
399 | /*!
|
---|
400 | \fn bool operator==(const QVector3D &v1, const QVector3D &v2)
|
---|
401 | \relates QVector3D
|
---|
402 |
|
---|
403 | Returns true if \a v1 is equal to \a v2; otherwise returns false.
|
---|
404 | This operator uses an exact floating-point comparison.
|
---|
405 | */
|
---|
406 |
|
---|
407 | /*!
|
---|
408 | \fn bool operator!=(const QVector3D &v1, const QVector3D &v2)
|
---|
409 | \relates QVector3D
|
---|
410 |
|
---|
411 | Returns true if \a v1 is not equal to \a v2; otherwise returns false.
|
---|
412 | This operator uses an exact floating-point comparison.
|
---|
413 | */
|
---|
414 |
|
---|
415 | /*!
|
---|
416 | \fn const QVector3D operator+(const QVector3D &v1, const QVector3D &v2)
|
---|
417 | \relates QVector3D
|
---|
418 |
|
---|
419 | Returns a QVector3D object that is the sum of the given vectors, \a v1
|
---|
420 | and \a v2; each component is added separately.
|
---|
421 |
|
---|
422 | \sa QVector3D::operator+=()
|
---|
423 | */
|
---|
424 |
|
---|
425 | /*!
|
---|
426 | \fn const QVector3D operator-(const QVector3D &v1, const QVector3D &v2)
|
---|
427 | \relates QVector3D
|
---|
428 |
|
---|
429 | Returns a QVector3D object that is formed by subtracting \a v2 from \a v1;
|
---|
430 | each component is subtracted separately.
|
---|
431 |
|
---|
432 | \sa QVector3D::operator-=()
|
---|
433 | */
|
---|
434 |
|
---|
435 | /*!
|
---|
436 | \fn const QVector3D operator*(qreal factor, const QVector3D &vector)
|
---|
437 | \relates QVector3D
|
---|
438 |
|
---|
439 | Returns a copy of the given \a vector, multiplied by the given \a factor.
|
---|
440 |
|
---|
441 | \sa QVector3D::operator*=()
|
---|
442 | */
|
---|
443 |
|
---|
444 | /*!
|
---|
445 | \fn const QVector3D operator*(const QVector3D &vector, qreal factor)
|
---|
446 | \relates QVector3D
|
---|
447 |
|
---|
448 | Returns a copy of the given \a vector, multiplied by the given \a factor.
|
---|
449 |
|
---|
450 | \sa QVector3D::operator*=()
|
---|
451 | */
|
---|
452 |
|
---|
453 | /*!
|
---|
454 | \fn const QVector3D operator*(const QVector3D &v1, const QVector3D& v2)
|
---|
455 | \relates QVector3D
|
---|
456 |
|
---|
457 | Multiplies the components of \a v1 by the corresponding components in \a v2.
|
---|
458 |
|
---|
459 | Note: this is not the same as the crossProduct() of \a v1 and \a v2.
|
---|
460 |
|
---|
461 | \sa QVector3D::crossProduct()
|
---|
462 | */
|
---|
463 |
|
---|
464 | /*!
|
---|
465 | \fn const QVector3D operator-(const QVector3D &vector)
|
---|
466 | \relates QVector3D
|
---|
467 | \overload
|
---|
468 |
|
---|
469 | Returns a QVector3D object that is formed by changing the sign of
|
---|
470 | all three components of the given \a vector.
|
---|
471 |
|
---|
472 | Equivalent to \c {QVector3D(0,0,0) - vector}.
|
---|
473 | */
|
---|
474 |
|
---|
475 | /*!
|
---|
476 | \fn const QVector3D operator/(const QVector3D &vector, qreal divisor)
|
---|
477 | \relates QVector3D
|
---|
478 |
|
---|
479 | Returns the QVector3D object formed by dividing all three components of
|
---|
480 | the given \a vector by the given \a divisor.
|
---|
481 |
|
---|
482 | \sa QVector3D::operator/=()
|
---|
483 | */
|
---|
484 |
|
---|
485 | /*!
|
---|
486 | \fn bool qFuzzyCompare(const QVector3D& v1, const QVector3D& v2)
|
---|
487 | \relates QVector3D
|
---|
488 |
|
---|
489 | Returns true if \a v1 and \a v2 are equal, allowing for a small
|
---|
490 | fuzziness factor for floating-point comparisons; false otherwise.
|
---|
491 | */
|
---|
492 |
|
---|
493 | #ifndef QT_NO_VECTOR2D
|
---|
494 |
|
---|
495 | /*!
|
---|
496 | Returns the 2D vector form of this 3D vector, dropping the z coordinate.
|
---|
497 |
|
---|
498 | \sa toVector4D(), toPoint()
|
---|
499 | */
|
---|
500 | QVector2D QVector3D::toVector2D() const
|
---|
501 | {
|
---|
502 | return QVector2D(xp, yp, 1);
|
---|
503 | }
|
---|
504 |
|
---|
505 | #endif
|
---|
506 |
|
---|
507 | #ifndef QT_NO_VECTOR4D
|
---|
508 |
|
---|
509 | /*!
|
---|
510 | Returns the 4D form of this 3D vector, with the w coordinate set to zero.
|
---|
511 |
|
---|
512 | \sa toVector2D(), toPoint()
|
---|
513 | */
|
---|
514 | QVector4D QVector3D::toVector4D() const
|
---|
515 | {
|
---|
516 | return QVector4D(xp, yp, zp, 0.0f, 1);
|
---|
517 | }
|
---|
518 |
|
---|
519 | #endif
|
---|
520 |
|
---|
521 | /*!
|
---|
522 | \fn QPoint QVector3D::toPoint() const
|
---|
523 |
|
---|
524 | Returns the QPoint form of this 3D vector. The z coordinate
|
---|
525 | is dropped.
|
---|
526 |
|
---|
527 | \sa toPointF(), toVector2D()
|
---|
528 | */
|
---|
529 |
|
---|
530 | /*!
|
---|
531 | \fn QPointF QVector3D::toPointF() const
|
---|
532 |
|
---|
533 | Returns the QPointF form of this 3D vector. The z coordinate
|
---|
534 | is dropped.
|
---|
535 |
|
---|
536 | \sa toPoint(), toVector2D()
|
---|
537 | */
|
---|
538 |
|
---|
539 | /*!
|
---|
540 | Returns the 3D vector as a QVariant.
|
---|
541 | */
|
---|
542 | QVector3D::operator QVariant() const
|
---|
543 | {
|
---|
544 | return QVariant(QVariant::Vector3D, this);
|
---|
545 | }
|
---|
546 |
|
---|
547 | /*!
|
---|
548 | Returns the length of the vector from the origin.
|
---|
549 |
|
---|
550 | \sa lengthSquared(), normalized()
|
---|
551 | */
|
---|
552 | qreal QVector3D::length() const
|
---|
553 | {
|
---|
554 | return qSqrt(xp * xp + yp * yp + zp * zp);
|
---|
555 | }
|
---|
556 |
|
---|
557 | /*!
|
---|
558 | Returns the squared length of the vector from the origin.
|
---|
559 | This is equivalent to the dot product of the vector with itself.
|
---|
560 |
|
---|
561 | \sa length(), dotProduct()
|
---|
562 | */
|
---|
563 | qreal QVector3D::lengthSquared() const
|
---|
564 | {
|
---|
565 | return xp * xp + yp * yp + zp * zp;
|
---|
566 | }
|
---|
567 |
|
---|
568 | #ifndef QT_NO_DEBUG_STREAM
|
---|
569 |
|
---|
570 | QDebug operator<<(QDebug dbg, const QVector3D &vector)
|
---|
571 | {
|
---|
572 | dbg.nospace() << "QVector3D("
|
---|
573 | << vector.x() << ", " << vector.y() << ", " << vector.z() << ')';
|
---|
574 | return dbg.space();
|
---|
575 | }
|
---|
576 |
|
---|
577 | #endif
|
---|
578 |
|
---|
579 | #ifndef QT_NO_DATASTREAM
|
---|
580 |
|
---|
581 | /*!
|
---|
582 | \fn QDataStream &operator<<(QDataStream &stream, const QVector3D &vector)
|
---|
583 | \relates QVector3D
|
---|
584 |
|
---|
585 | Writes the given \a vector to the given \a stream and returns a
|
---|
586 | reference to the stream.
|
---|
587 |
|
---|
588 | \sa {Format of the QDataStream Operators}
|
---|
589 | */
|
---|
590 |
|
---|
591 | QDataStream &operator<<(QDataStream &stream, const QVector3D &vector)
|
---|
592 | {
|
---|
593 | stream << double(vector.x()) << double(vector.y())
|
---|
594 | << double(vector.z());
|
---|
595 | return stream;
|
---|
596 | }
|
---|
597 |
|
---|
598 | /*!
|
---|
599 | \fn QDataStream &operator>>(QDataStream &stream, QVector3D &vector)
|
---|
600 | \relates QVector3D
|
---|
601 |
|
---|
602 | Reads a 3D vector from the given \a stream into the given \a vector
|
---|
603 | and returns a reference to the stream.
|
---|
604 |
|
---|
605 | \sa {Format of the QDataStream Operators}
|
---|
606 | */
|
---|
607 |
|
---|
608 | QDataStream &operator>>(QDataStream &stream, QVector3D &vector)
|
---|
609 | {
|
---|
610 | double x, y, z;
|
---|
611 | stream >> x;
|
---|
612 | stream >> y;
|
---|
613 | stream >> z;
|
---|
614 | vector.setX(qreal(x));
|
---|
615 | vector.setY(qreal(y));
|
---|
616 | vector.setZ(qreal(z));
|
---|
617 | return stream;
|
---|
618 | }
|
---|
619 |
|
---|
620 | #endif // QT_NO_DATASTREAM
|
---|
621 |
|
---|
622 | #endif // QT_NO_VECTOR3D
|
---|
623 |
|
---|
624 | QT_END_NAMESPACE
|
---|