1 | /****************************************************************************
|
---|
2 | **
|
---|
3 | ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
|
---|
4 | ** All rights reserved.
|
---|
5 | ** Contact: Nokia Corporation ([email protected])
|
---|
6 | **
|
---|
7 | ** This file is part of the QtGui module of the Qt Toolkit.
|
---|
8 | **
|
---|
9 | ** $QT_BEGIN_LICENSE:LGPL$
|
---|
10 | ** Commercial Usage
|
---|
11 | ** Licensees holding valid Qt Commercial licenses may use this file in
|
---|
12 | ** accordance with the Qt Commercial License Agreement provided with the
|
---|
13 | ** Software or, alternatively, in accordance with the terms contained in
|
---|
14 | ** a written agreement between you and Nokia.
|
---|
15 | **
|
---|
16 | ** GNU Lesser General Public License Usage
|
---|
17 | ** Alternatively, this file may be used under the terms of the GNU Lesser
|
---|
18 | ** General Public License version 2.1 as published by the Free Software
|
---|
19 | ** Foundation and appearing in the file LICENSE.LGPL included in the
|
---|
20 | ** packaging of this file. Please review the following information to
|
---|
21 | ** ensure the GNU Lesser General Public License version 2.1 requirements
|
---|
22 | ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
---|
23 | **
|
---|
24 | ** In addition, as a special exception, Nokia gives you certain additional
|
---|
25 | ** rights. These rights are described in the Nokia Qt LGPL Exception
|
---|
26 | ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
---|
27 | **
|
---|
28 | ** GNU General Public License Usage
|
---|
29 | ** Alternatively, this file may be used under the terms of the GNU
|
---|
30 | ** General Public License version 3.0 as published by the Free Software
|
---|
31 | ** Foundation and appearing in the file LICENSE.GPL included in the
|
---|
32 | ** packaging of this file. Please review the following information to
|
---|
33 | ** ensure the GNU General Public License version 3.0 requirements will be
|
---|
34 | ** met: http://www.gnu.org/copyleft/gpl.html.
|
---|
35 | **
|
---|
36 | ** If you have questions regarding the use of this file, please contact
|
---|
37 | ** Nokia at [email protected].
|
---|
38 | ** $QT_END_LICENSE$
|
---|
39 | **
|
---|
40 | ****************************************************************************/
|
---|
41 |
|
---|
42 | #include <QtGui/qwidget.h>
|
---|
43 | #include <QtGui/qapplication.h>
|
---|
44 | #include <QtCore/qlinkedlist.h>
|
---|
45 | #include <QtCore/qstack.h>
|
---|
46 |
|
---|
47 | #ifdef QT_DEBUG
|
---|
48 | #include <QtCore/qfile.h>
|
---|
49 | #endif
|
---|
50 |
|
---|
51 | #include "qgraphicsanchorlayout_p.h"
|
---|
52 |
|
---|
53 | #ifndef QT_NO_GRAPHICSVIEW
|
---|
54 | QT_BEGIN_NAMESPACE
|
---|
55 |
|
---|
56 | // To ensure that all variables inside the simplex solver are non-negative,
|
---|
57 | // we limit the size of anchors in the interval [-limit, limit]. Then before
|
---|
58 | // sending them to the simplex solver we add "limit" as an offset, so that
|
---|
59 | // they are actually calculated in the interval [0, 2 * limit]
|
---|
60 | // To avoid numerical errors in platforms where we use single precision,
|
---|
61 | // we use a tighter limit for the variables range.
|
---|
62 | const qreal g_offset = (sizeof(qreal) == sizeof(double)) ? QWIDGETSIZE_MAX : QWIDGETSIZE_MAX / 32;
|
---|
63 |
|
---|
64 | QGraphicsAnchorPrivate::QGraphicsAnchorPrivate(int version)
|
---|
65 | : QObjectPrivate(version), layoutPrivate(0), data(0),
|
---|
66 | sizePolicy(QSizePolicy::Fixed), preferredSize(0),
|
---|
67 | hasSize(true)
|
---|
68 | {
|
---|
69 | }
|
---|
70 |
|
---|
71 | QGraphicsAnchorPrivate::~QGraphicsAnchorPrivate()
|
---|
72 | {
|
---|
73 | if (data) {
|
---|
74 | // The QGraphicsAnchor was already deleted at this moment. We must clean
|
---|
75 | // the dangling pointer to avoid double deletion in the AnchorData dtor.
|
---|
76 | data->graphicsAnchor = 0;
|
---|
77 |
|
---|
78 | layoutPrivate->removeAnchor(data->from, data->to);
|
---|
79 | }
|
---|
80 | }
|
---|
81 |
|
---|
82 | void QGraphicsAnchorPrivate::setSizePolicy(QSizePolicy::Policy policy)
|
---|
83 | {
|
---|
84 | if (sizePolicy != policy) {
|
---|
85 | sizePolicy = policy;
|
---|
86 | layoutPrivate->q_func()->invalidate();
|
---|
87 | }
|
---|
88 | }
|
---|
89 |
|
---|
90 | void QGraphicsAnchorPrivate::setSpacing(qreal value)
|
---|
91 | {
|
---|
92 | if (!data) {
|
---|
93 | qWarning("QGraphicsAnchor::setSpacing: The anchor does not exist.");
|
---|
94 | return;
|
---|
95 | }
|
---|
96 |
|
---|
97 | if (hasSize && (preferredSize == value))
|
---|
98 | return;
|
---|
99 |
|
---|
100 | // The anchor has an user-defined size
|
---|
101 | hasSize = true;
|
---|
102 | preferredSize = value;
|
---|
103 |
|
---|
104 | layoutPrivate->q_func()->invalidate();
|
---|
105 | }
|
---|
106 |
|
---|
107 | void QGraphicsAnchorPrivate::unsetSpacing()
|
---|
108 | {
|
---|
109 | if (!data) {
|
---|
110 | qWarning("QGraphicsAnchor::setSpacing: The anchor does not exist.");
|
---|
111 | return;
|
---|
112 | }
|
---|
113 |
|
---|
114 | // Return to standard direction
|
---|
115 | hasSize = false;
|
---|
116 |
|
---|
117 | layoutPrivate->q_func()->invalidate();
|
---|
118 | }
|
---|
119 |
|
---|
120 | qreal QGraphicsAnchorPrivate::spacing() const
|
---|
121 | {
|
---|
122 | if (!data) {
|
---|
123 | qWarning("QGraphicsAnchor::setSpacing: The anchor does not exist.");
|
---|
124 | return 0;
|
---|
125 | }
|
---|
126 |
|
---|
127 | return preferredSize;
|
---|
128 | }
|
---|
129 |
|
---|
130 |
|
---|
131 | static void applySizePolicy(QSizePolicy::Policy policy,
|
---|
132 | qreal minSizeHint, qreal prefSizeHint, qreal maxSizeHint,
|
---|
133 | qreal *minSize, qreal *prefSize,
|
---|
134 | qreal *maxSize)
|
---|
135 | {
|
---|
136 | // minSize, prefSize and maxSize are initialized
|
---|
137 | // with item's preferred Size: this is QSizePolicy::Fixed.
|
---|
138 | //
|
---|
139 | // Then we check each flag to find the resultant QSizePolicy,
|
---|
140 | // according to the following table:
|
---|
141 | //
|
---|
142 | // constant value
|
---|
143 | // QSizePolicy::Fixed 0
|
---|
144 | // QSizePolicy::Minimum GrowFlag
|
---|
145 | // QSizePolicy::Maximum ShrinkFlag
|
---|
146 | // QSizePolicy::Preferred GrowFlag | ShrinkFlag
|
---|
147 | // QSizePolicy::Ignored GrowFlag | ShrinkFlag | IgnoreFlag
|
---|
148 |
|
---|
149 | if (policy & QSizePolicy::ShrinkFlag)
|
---|
150 | *minSize = minSizeHint;
|
---|
151 | else
|
---|
152 | *minSize = prefSizeHint;
|
---|
153 |
|
---|
154 | if (policy & QSizePolicy::GrowFlag)
|
---|
155 | *maxSize = maxSizeHint;
|
---|
156 | else
|
---|
157 | *maxSize = prefSizeHint;
|
---|
158 |
|
---|
159 | // Note that these two initializations are affected by the previous flags
|
---|
160 | if (policy & QSizePolicy::IgnoreFlag)
|
---|
161 | *prefSize = *minSize;
|
---|
162 | else
|
---|
163 | *prefSize = prefSizeHint;
|
---|
164 | }
|
---|
165 |
|
---|
166 | AnchorData::~AnchorData()
|
---|
167 | {
|
---|
168 | if (graphicsAnchor) {
|
---|
169 | // Remove reference to ourself to avoid double removal in
|
---|
170 | // QGraphicsAnchorPrivate dtor.
|
---|
171 | graphicsAnchor->d_func()->data = 0;
|
---|
172 |
|
---|
173 | delete graphicsAnchor;
|
---|
174 | }
|
---|
175 | }
|
---|
176 |
|
---|
177 |
|
---|
178 | void AnchorData::refreshSizeHints(const QLayoutStyleInfo *styleInfo)
|
---|
179 | {
|
---|
180 | QSizePolicy::Policy policy;
|
---|
181 | qreal minSizeHint;
|
---|
182 | qreal prefSizeHint;
|
---|
183 | qreal maxSizeHint;
|
---|
184 |
|
---|
185 | if (item) {
|
---|
186 | // It is an internal anchor, fetch size information from the item
|
---|
187 | if (isLayoutAnchor) {
|
---|
188 | minSize = 0;
|
---|
189 | prefSize = 0;
|
---|
190 | maxSize = QWIDGETSIZE_MAX;
|
---|
191 | if (isCenterAnchor)
|
---|
192 | maxSize /= 2;
|
---|
193 |
|
---|
194 | minPrefSize = prefSize;
|
---|
195 | maxPrefSize = maxSize;
|
---|
196 | return;
|
---|
197 | } else {
|
---|
198 | if (orientation == QGraphicsAnchorLayoutPrivate::Horizontal) {
|
---|
199 | policy = item->sizePolicy().horizontalPolicy();
|
---|
200 | minSizeHint = item->effectiveSizeHint(Qt::MinimumSize).width();
|
---|
201 | prefSizeHint = item->effectiveSizeHint(Qt::PreferredSize).width();
|
---|
202 | maxSizeHint = item->effectiveSizeHint(Qt::MaximumSize).width();
|
---|
203 | } else {
|
---|
204 | policy = item->sizePolicy().verticalPolicy();
|
---|
205 | minSizeHint = item->effectiveSizeHint(Qt::MinimumSize).height();
|
---|
206 | prefSizeHint = item->effectiveSizeHint(Qt::PreferredSize).height();
|
---|
207 | maxSizeHint = item->effectiveSizeHint(Qt::MaximumSize).height();
|
---|
208 | }
|
---|
209 |
|
---|
210 | if (isCenterAnchor) {
|
---|
211 | minSizeHint /= 2;
|
---|
212 | prefSizeHint /= 2;
|
---|
213 | maxSizeHint /= 2;
|
---|
214 | }
|
---|
215 | }
|
---|
216 | } else {
|
---|
217 | // It is a user-created anchor, fetch size information from the associated QGraphicsAnchor
|
---|
218 | Q_ASSERT(graphicsAnchor);
|
---|
219 | QGraphicsAnchorPrivate *anchorPrivate = graphicsAnchor->d_func();
|
---|
220 |
|
---|
221 | // Policy, min and max sizes are straightforward
|
---|
222 | policy = anchorPrivate->sizePolicy;
|
---|
223 | minSizeHint = 0;
|
---|
224 | maxSizeHint = QWIDGETSIZE_MAX;
|
---|
225 |
|
---|
226 | // Preferred Size
|
---|
227 | if (anchorPrivate->hasSize) {
|
---|
228 | // Anchor has user-defined size
|
---|
229 | prefSizeHint = anchorPrivate->preferredSize;
|
---|
230 | } else {
|
---|
231 | // Fetch size information from style
|
---|
232 | const Qt::Orientation orient = Qt::Orientation(QGraphicsAnchorLayoutPrivate::edgeOrientation(from->m_edge) + 1);
|
---|
233 | qreal s = styleInfo->defaultSpacing(orient);
|
---|
234 | if (s < 0) {
|
---|
235 | QSizePolicy::ControlType controlTypeFrom = from->m_item->sizePolicy().controlType();
|
---|
236 | QSizePolicy::ControlType controlTypeTo = to->m_item->sizePolicy().controlType();
|
---|
237 | s = styleInfo->perItemSpacing(controlTypeFrom, controlTypeTo, orient);
|
---|
238 |
|
---|
239 | // ### Currently we do not support negative anchors inside the graph.
|
---|
240 | // To avoid those being created by a negative style spacing, we must
|
---|
241 | // make this test.
|
---|
242 | if (s < 0)
|
---|
243 | s = 0;
|
---|
244 | }
|
---|
245 | prefSizeHint = s;
|
---|
246 | }
|
---|
247 | }
|
---|
248 |
|
---|
249 | // Fill minSize, prefSize and maxSize based on policy and sizeHints
|
---|
250 | applySizePolicy(policy, minSizeHint, prefSizeHint, maxSizeHint,
|
---|
251 | &minSize, &prefSize, &maxSize);
|
---|
252 |
|
---|
253 | minPrefSize = prefSize;
|
---|
254 | maxPrefSize = maxSize;
|
---|
255 |
|
---|
256 | // Set the anchor effective sizes to preferred.
|
---|
257 | //
|
---|
258 | // Note: The idea here is that all items should remain at their
|
---|
259 | // preferred size unless where that's impossible. In cases where
|
---|
260 | // the item is subject to restrictions (anchored to the layout
|
---|
261 | // edges, for instance), the simplex solver will be run to
|
---|
262 | // recalculate and override the values we set here.
|
---|
263 | sizeAtMinimum = prefSize;
|
---|
264 | sizeAtPreferred = prefSize;
|
---|
265 | sizeAtMaximum = prefSize;
|
---|
266 | }
|
---|
267 |
|
---|
268 | void ParallelAnchorData::updateChildrenSizes()
|
---|
269 | {
|
---|
270 | firstEdge->sizeAtMinimum = sizeAtMinimum;
|
---|
271 | firstEdge->sizeAtPreferred = sizeAtPreferred;
|
---|
272 | firstEdge->sizeAtMaximum = sizeAtMaximum;
|
---|
273 |
|
---|
274 | if (secondForward()) {
|
---|
275 | secondEdge->sizeAtMinimum = sizeAtMinimum;
|
---|
276 | secondEdge->sizeAtPreferred = sizeAtPreferred;
|
---|
277 | secondEdge->sizeAtMaximum = sizeAtMaximum;
|
---|
278 | } else {
|
---|
279 | secondEdge->sizeAtMinimum = -sizeAtMinimum;
|
---|
280 | secondEdge->sizeAtPreferred = -sizeAtPreferred;
|
---|
281 | secondEdge->sizeAtMaximum = -sizeAtMaximum;
|
---|
282 | }
|
---|
283 |
|
---|
284 | firstEdge->updateChildrenSizes();
|
---|
285 | secondEdge->updateChildrenSizes();
|
---|
286 | }
|
---|
287 |
|
---|
288 | /*
|
---|
289 | \internal
|
---|
290 |
|
---|
291 | Initialize the parallel anchor size hints using the sizeHint information from
|
---|
292 | its children.
|
---|
293 |
|
---|
294 | Note that parallel groups can lead to unfeasibility, so during calculation, we can
|
---|
295 | find out one unfeasibility. Because of that this method return boolean. This can't
|
---|
296 | happen in sequential, so there the method is void.
|
---|
297 | */
|
---|
298 | bool ParallelAnchorData::calculateSizeHints()
|
---|
299 | {
|
---|
300 | // Normalize second child sizes.
|
---|
301 | // A negative anchor of sizes min, minPref, pref, maxPref and max, is equivalent
|
---|
302 | // to a forward anchor of sizes -max, -maxPref, -pref, -minPref, -min
|
---|
303 | qreal secondMin;
|
---|
304 | qreal secondMinPref;
|
---|
305 | qreal secondPref;
|
---|
306 | qreal secondMaxPref;
|
---|
307 | qreal secondMax;
|
---|
308 |
|
---|
309 | if (secondForward()) {
|
---|
310 | secondMin = secondEdge->minSize;
|
---|
311 | secondMinPref = secondEdge->minPrefSize;
|
---|
312 | secondPref = secondEdge->prefSize;
|
---|
313 | secondMaxPref = secondEdge->maxPrefSize;
|
---|
314 | secondMax = secondEdge->maxSize;
|
---|
315 | } else {
|
---|
316 | secondMin = -secondEdge->maxSize;
|
---|
317 | secondMinPref = -secondEdge->maxPrefSize;
|
---|
318 | secondPref = -secondEdge->prefSize;
|
---|
319 | secondMaxPref = -secondEdge->minPrefSize;
|
---|
320 | secondMax = -secondEdge->minSize;
|
---|
321 | }
|
---|
322 |
|
---|
323 | minSize = qMax(firstEdge->minSize, secondMin);
|
---|
324 | maxSize = qMin(firstEdge->maxSize, secondMax);
|
---|
325 |
|
---|
326 | // This condition means that the maximum size of one anchor being simplified is smaller than
|
---|
327 | // the minimum size of the other anchor. The consequence is that there won't be a valid size
|
---|
328 | // for this parallel setup.
|
---|
329 | if (minSize > maxSize) {
|
---|
330 | return false;
|
---|
331 | }
|
---|
332 |
|
---|
333 | // Preferred size calculation
|
---|
334 | // The calculation of preferred size is done as follows:
|
---|
335 | //
|
---|
336 | // 1) Check whether one of the child anchors is the layout structural anchor
|
---|
337 | // If so, we can simply copy the preferred information from the other child,
|
---|
338 | // after bounding it to our minimum and maximum sizes.
|
---|
339 | // If not, then we proceed with the actual calculations.
|
---|
340 | //
|
---|
341 | // 2) The whole algorithm for preferred size calculation is based on the fact
|
---|
342 | // that, if a given anchor cannot remain at its preferred size, it'd rather
|
---|
343 | // grow than shrink.
|
---|
344 | //
|
---|
345 | // What happens though is that while this affirmative is true for simple
|
---|
346 | // anchors, it may not be true for sequential anchors that have one or more
|
---|
347 | // reversed anchors inside it. That happens because when a sequential anchor
|
---|
348 | // grows, any reversed anchors inside it may be required to shrink, something
|
---|
349 | // we try to avoid, as said above.
|
---|
350 | //
|
---|
351 | // To overcome this, besides their actual preferred size "prefSize", each anchor
|
---|
352 | // exports what we call "minPrefSize" and "maxPrefSize". These two values define
|
---|
353 | // a surrounding interval where, if required to move, the anchor would rather
|
---|
354 | // remain inside.
|
---|
355 | //
|
---|
356 | // For standard anchors, this area simply represents the region between
|
---|
357 | // prefSize and maxSize, which makes sense since our first affirmation.
|
---|
358 | // For composed anchors, these values are calculated as to reduce the global
|
---|
359 | // "damage", that is, to reduce the total deviation and the total amount of
|
---|
360 | // anchors that had to shrink.
|
---|
361 |
|
---|
362 | if (firstEdge->isLayoutAnchor) {
|
---|
363 | prefSize = qBound(minSize, secondPref, maxSize);
|
---|
364 | minPrefSize = qBound(minSize, secondMinPref, maxSize);
|
---|
365 | maxPrefSize = qBound(minSize, secondMaxPref, maxSize);
|
---|
366 | } else if (secondEdge->isLayoutAnchor) {
|
---|
367 | prefSize = qBound(minSize, firstEdge->prefSize, maxSize);
|
---|
368 | minPrefSize = qBound(minSize, firstEdge->minPrefSize, maxSize);
|
---|
369 | maxPrefSize = qBound(minSize, firstEdge->maxPrefSize, maxSize);
|
---|
370 | } else {
|
---|
371 | // Calculate the intersection between the "preferred" regions of each child
|
---|
372 | const qreal lowerBoundary =
|
---|
373 | qBound(minSize, qMax(firstEdge->minPrefSize, secondMinPref), maxSize);
|
---|
374 | const qreal upperBoundary =
|
---|
375 | qBound(minSize, qMin(firstEdge->maxPrefSize, secondMaxPref), maxSize);
|
---|
376 | const qreal prefMean =
|
---|
377 | qBound(minSize, (firstEdge->prefSize + secondPref) / 2, maxSize);
|
---|
378 |
|
---|
379 | if (lowerBoundary < upperBoundary) {
|
---|
380 | // If there is an intersection between the two regions, this intersection
|
---|
381 | // will be used as the preferred region of the parallel anchor itself.
|
---|
382 | // The preferred size will be the bounded average between the two preferred
|
---|
383 | // sizes.
|
---|
384 | prefSize = qBound(lowerBoundary, prefMean, upperBoundary);
|
---|
385 | minPrefSize = lowerBoundary;
|
---|
386 | maxPrefSize = upperBoundary;
|
---|
387 | } else {
|
---|
388 | // If there is no intersection, we have to attribute "damage" to at least
|
---|
389 | // one of the children. The minimum total damage is achieved in points
|
---|
390 | // inside the region that extends from (1) the upper boundary of the lower
|
---|
391 | // region to (2) the lower boundary of the upper region.
|
---|
392 | // Then, we expose this region as _our_ preferred region and once again,
|
---|
393 | // use the bounded average as our preferred size.
|
---|
394 | prefSize = qBound(upperBoundary, prefMean, lowerBoundary);
|
---|
395 | minPrefSize = upperBoundary;
|
---|
396 | maxPrefSize = lowerBoundary;
|
---|
397 | }
|
---|
398 | }
|
---|
399 |
|
---|
400 | // See comment in AnchorData::refreshSizeHints() about sizeAt* values
|
---|
401 | sizeAtMinimum = prefSize;
|
---|
402 | sizeAtPreferred = prefSize;
|
---|
403 | sizeAtMaximum = prefSize;
|
---|
404 |
|
---|
405 | return true;
|
---|
406 | }
|
---|
407 |
|
---|
408 | /*!
|
---|
409 | \internal
|
---|
410 | returns the factor in the interval [-1, 1].
|
---|
411 | -1 is at Minimum
|
---|
412 | 0 is at Preferred
|
---|
413 | 1 is at Maximum
|
---|
414 | */
|
---|
415 | static QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> getFactor(qreal value, qreal min,
|
---|
416 | qreal minPref, qreal pref,
|
---|
417 | qreal maxPref, qreal max)
|
---|
418 | {
|
---|
419 | QGraphicsAnchorLayoutPrivate::Interval interval;
|
---|
420 | qreal lower;
|
---|
421 | qreal upper;
|
---|
422 |
|
---|
423 | if (value < minPref) {
|
---|
424 | interval = QGraphicsAnchorLayoutPrivate::MinimumToMinPreferred;
|
---|
425 | lower = min;
|
---|
426 | upper = minPref;
|
---|
427 | } else if (value < pref) {
|
---|
428 | interval = QGraphicsAnchorLayoutPrivate::MinPreferredToPreferred;
|
---|
429 | lower = minPref;
|
---|
430 | upper = pref;
|
---|
431 | } else if (value < maxPref) {
|
---|
432 | interval = QGraphicsAnchorLayoutPrivate::PreferredToMaxPreferred;
|
---|
433 | lower = pref;
|
---|
434 | upper = maxPref;
|
---|
435 | } else {
|
---|
436 | interval = QGraphicsAnchorLayoutPrivate::MaxPreferredToMaximum;
|
---|
437 | lower = maxPref;
|
---|
438 | upper = max;
|
---|
439 | }
|
---|
440 |
|
---|
441 | qreal progress;
|
---|
442 | if (upper == lower) {
|
---|
443 | progress = 0;
|
---|
444 | } else {
|
---|
445 | progress = (value - lower) / (upper - lower);
|
---|
446 | }
|
---|
447 |
|
---|
448 | return qMakePair(interval, progress);
|
---|
449 | }
|
---|
450 |
|
---|
451 | static qreal interpolate(const QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> &factor,
|
---|
452 | qreal min, qreal minPref, qreal pref, qreal maxPref, qreal max)
|
---|
453 | {
|
---|
454 | qreal lower;
|
---|
455 | qreal upper;
|
---|
456 |
|
---|
457 | switch (factor.first) {
|
---|
458 | case QGraphicsAnchorLayoutPrivate::MinimumToMinPreferred:
|
---|
459 | lower = min;
|
---|
460 | upper = minPref;
|
---|
461 | break;
|
---|
462 | case QGraphicsAnchorLayoutPrivate::MinPreferredToPreferred:
|
---|
463 | lower = minPref;
|
---|
464 | upper = pref;
|
---|
465 | break;
|
---|
466 | case QGraphicsAnchorLayoutPrivate::PreferredToMaxPreferred:
|
---|
467 | lower = pref;
|
---|
468 | upper = maxPref;
|
---|
469 | break;
|
---|
470 | case QGraphicsAnchorLayoutPrivate::MaxPreferredToMaximum:
|
---|
471 | lower = maxPref;
|
---|
472 | upper = max;
|
---|
473 | break;
|
---|
474 | }
|
---|
475 |
|
---|
476 | return lower + factor.second * (upper - lower);
|
---|
477 | }
|
---|
478 |
|
---|
479 | void SequentialAnchorData::updateChildrenSizes()
|
---|
480 | {
|
---|
481 | // Band here refers if the value is in the Minimum To Preferred
|
---|
482 | // band (the lower band) or the Preferred To Maximum (the upper band).
|
---|
483 |
|
---|
484 | const QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> minFactor =
|
---|
485 | getFactor(sizeAtMinimum, minSize, minPrefSize, prefSize, maxPrefSize, maxSize);
|
---|
486 | const QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> prefFactor =
|
---|
487 | getFactor(sizeAtPreferred, minSize, minPrefSize, prefSize, maxPrefSize, maxSize);
|
---|
488 | const QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> maxFactor =
|
---|
489 | getFactor(sizeAtMaximum, minSize, minPrefSize, prefSize, maxPrefSize, maxSize);
|
---|
490 |
|
---|
491 | // XXX This is not safe if Vertex simplification takes place after the sequential
|
---|
492 | // anchor is created. In that case, "prev" will be a group-vertex, different from
|
---|
493 | // "from" or "to", that _contains_ one of them.
|
---|
494 | AnchorVertex *prev = from;
|
---|
495 |
|
---|
496 | for (int i = 0; i < m_edges.count(); ++i) {
|
---|
497 | AnchorData *e = m_edges.at(i);
|
---|
498 |
|
---|
499 | const bool edgeIsForward = (e->from == prev);
|
---|
500 | if (edgeIsForward) {
|
---|
501 | e->sizeAtMinimum = interpolate(minFactor, e->minSize, e->minPrefSize,
|
---|
502 | e->prefSize, e->maxPrefSize, e->maxSize);
|
---|
503 | e->sizeAtPreferred = interpolate(prefFactor, e->minSize, e->minPrefSize,
|
---|
504 | e->prefSize, e->maxPrefSize, e->maxSize);
|
---|
505 | e->sizeAtMaximum = interpolate(maxFactor, e->minSize, e->minPrefSize,
|
---|
506 | e->prefSize, e->maxPrefSize, e->maxSize);
|
---|
507 | prev = e->to;
|
---|
508 | } else {
|
---|
509 | Q_ASSERT(prev == e->to);
|
---|
510 | e->sizeAtMinimum = interpolate(minFactor, e->maxSize, e->maxPrefSize,
|
---|
511 | e->prefSize, e->minPrefSize, e->minSize);
|
---|
512 | e->sizeAtPreferred = interpolate(prefFactor, e->maxSize, e->maxPrefSize,
|
---|
513 | e->prefSize, e->minPrefSize, e->minSize);
|
---|
514 | e->sizeAtMaximum = interpolate(maxFactor, e->maxSize, e->maxPrefSize,
|
---|
515 | e->prefSize, e->minPrefSize, e->minSize);
|
---|
516 | prev = e->from;
|
---|
517 | }
|
---|
518 |
|
---|
519 | e->updateChildrenSizes();
|
---|
520 | }
|
---|
521 | }
|
---|
522 |
|
---|
523 | void SequentialAnchorData::calculateSizeHints()
|
---|
524 | {
|
---|
525 | minSize = 0;
|
---|
526 | prefSize = 0;
|
---|
527 | maxSize = 0;
|
---|
528 | minPrefSize = 0;
|
---|
529 | maxPrefSize = 0;
|
---|
530 |
|
---|
531 | AnchorVertex *prev = from;
|
---|
532 |
|
---|
533 | for (int i = 0; i < m_edges.count(); ++i) {
|
---|
534 | AnchorData *edge = m_edges.at(i);
|
---|
535 |
|
---|
536 | const bool edgeIsForward = (edge->from == prev);
|
---|
537 | if (edgeIsForward) {
|
---|
538 | minSize += edge->minSize;
|
---|
539 | prefSize += edge->prefSize;
|
---|
540 | maxSize += edge->maxSize;
|
---|
541 | minPrefSize += edge->minPrefSize;
|
---|
542 | maxPrefSize += edge->maxPrefSize;
|
---|
543 | prev = edge->to;
|
---|
544 | } else {
|
---|
545 | Q_ASSERT(prev == edge->to);
|
---|
546 | minSize -= edge->maxSize;
|
---|
547 | prefSize -= edge->prefSize;
|
---|
548 | maxSize -= edge->minSize;
|
---|
549 | minPrefSize -= edge->maxPrefSize;
|
---|
550 | maxPrefSize -= edge->minPrefSize;
|
---|
551 | prev = edge->from;
|
---|
552 | }
|
---|
553 | }
|
---|
554 |
|
---|
555 | // See comment in AnchorData::refreshSizeHints() about sizeAt* values
|
---|
556 | sizeAtMinimum = prefSize;
|
---|
557 | sizeAtPreferred = prefSize;
|
---|
558 | sizeAtMaximum = prefSize;
|
---|
559 | }
|
---|
560 |
|
---|
561 | #ifdef QT_DEBUG
|
---|
562 | void AnchorData::dump(int indent) {
|
---|
563 | if (type == Parallel) {
|
---|
564 | qDebug("%*s type: parallel:", indent, "");
|
---|
565 | ParallelAnchorData *p = static_cast<ParallelAnchorData *>(this);
|
---|
566 | p->firstEdge->dump(indent+2);
|
---|
567 | p->secondEdge->dump(indent+2);
|
---|
568 | } else if (type == Sequential) {
|
---|
569 | SequentialAnchorData *s = static_cast<SequentialAnchorData *>(this);
|
---|
570 | int kids = s->m_edges.count();
|
---|
571 | qDebug("%*s type: sequential(%d):", indent, "", kids);
|
---|
572 | for (int i = 0; i < kids; ++i) {
|
---|
573 | s->m_edges.at(i)->dump(indent+2);
|
---|
574 | }
|
---|
575 | } else {
|
---|
576 | qDebug("%*s type: Normal:", indent, "");
|
---|
577 | }
|
---|
578 | }
|
---|
579 |
|
---|
580 | #endif
|
---|
581 |
|
---|
582 | QSimplexConstraint *GraphPath::constraint(const GraphPath &path) const
|
---|
583 | {
|
---|
584 | // Calculate
|
---|
585 | QSet<AnchorData *> cPositives;
|
---|
586 | QSet<AnchorData *> cNegatives;
|
---|
587 | QSet<AnchorData *> intersection;
|
---|
588 |
|
---|
589 | cPositives = positives + path.negatives;
|
---|
590 | cNegatives = negatives + path.positives;
|
---|
591 |
|
---|
592 | intersection = cPositives & cNegatives;
|
---|
593 |
|
---|
594 | cPositives -= intersection;
|
---|
595 | cNegatives -= intersection;
|
---|
596 |
|
---|
597 | // Fill
|
---|
598 | QSimplexConstraint *c = new QSimplexConstraint;
|
---|
599 | QSet<AnchorData *>::iterator i;
|
---|
600 | for (i = cPositives.begin(); i != cPositives.end(); ++i)
|
---|
601 | c->variables.insert(*i, 1.0);
|
---|
602 |
|
---|
603 | for (i = cNegatives.begin(); i != cNegatives.end(); ++i)
|
---|
604 | c->variables.insert(*i, -1.0);
|
---|
605 |
|
---|
606 | return c;
|
---|
607 | }
|
---|
608 |
|
---|
609 | #ifdef QT_DEBUG
|
---|
610 | QString GraphPath::toString() const
|
---|
611 | {
|
---|
612 | QString string(QLatin1String("Path: "));
|
---|
613 | foreach(AnchorData *edge, positives)
|
---|
614 | string += QString::fromAscii(" (+++) %1").arg(edge->toString());
|
---|
615 |
|
---|
616 | foreach(AnchorData *edge, negatives)
|
---|
617 | string += QString::fromAscii(" (---) %1").arg(edge->toString());
|
---|
618 |
|
---|
619 | return string;
|
---|
620 | }
|
---|
621 | #endif
|
---|
622 |
|
---|
623 | QGraphicsAnchorLayoutPrivate::QGraphicsAnchorLayoutPrivate()
|
---|
624 | : calculateGraphCacheDirty(true), styleInfoDirty(true)
|
---|
625 | {
|
---|
626 | for (int i = 0; i < NOrientations; ++i) {
|
---|
627 | for (int j = 0; j < 3; ++j) {
|
---|
628 | sizeHints[i][j] = -1;
|
---|
629 | }
|
---|
630 | interpolationProgress[i] = -1;
|
---|
631 |
|
---|
632 | spacings[i] = -1;
|
---|
633 | graphHasConflicts[i] = false;
|
---|
634 |
|
---|
635 | layoutFirstVertex[i] = 0;
|
---|
636 | layoutCentralVertex[i] = 0;
|
---|
637 | layoutLastVertex[i] = 0;
|
---|
638 | }
|
---|
639 | }
|
---|
640 |
|
---|
641 | Qt::AnchorPoint QGraphicsAnchorLayoutPrivate::oppositeEdge(Qt::AnchorPoint edge)
|
---|
642 | {
|
---|
643 | switch (edge) {
|
---|
644 | case Qt::AnchorLeft:
|
---|
645 | edge = Qt::AnchorRight;
|
---|
646 | break;
|
---|
647 | case Qt::AnchorRight:
|
---|
648 | edge = Qt::AnchorLeft;
|
---|
649 | break;
|
---|
650 | case Qt::AnchorTop:
|
---|
651 | edge = Qt::AnchorBottom;
|
---|
652 | break;
|
---|
653 | case Qt::AnchorBottom:
|
---|
654 | edge = Qt::AnchorTop;
|
---|
655 | break;
|
---|
656 | default:
|
---|
657 | break;
|
---|
658 | }
|
---|
659 | return edge;
|
---|
660 | }
|
---|
661 |
|
---|
662 |
|
---|
663 | /*!
|
---|
664 | * \internal
|
---|
665 | *
|
---|
666 | * helper function in order to avoid overflowing anchor sizes
|
---|
667 | * the returned size will never be larger than FLT_MAX
|
---|
668 | *
|
---|
669 | */
|
---|
670 | inline static qreal checkAdd(qreal a, qreal b)
|
---|
671 | {
|
---|
672 | if (FLT_MAX - b < a)
|
---|
673 | return FLT_MAX;
|
---|
674 | return a + b;
|
---|
675 | }
|
---|
676 |
|
---|
677 | /*!
|
---|
678 | \internal
|
---|
679 |
|
---|
680 | Adds \a newAnchor to the graph.
|
---|
681 |
|
---|
682 | Returns the newAnchor itself if it could be added without further changes to the graph. If a
|
---|
683 | new parallel anchor had to be created, then returns the new parallel anchor. If a parallel anchor
|
---|
684 | had to be created and it results in an unfeasible setup, \a feasible is set to false, otherwise
|
---|
685 | true.
|
---|
686 |
|
---|
687 | Note that in the case a new parallel anchor is created, it might also take over some constraints
|
---|
688 | from its children anchors.
|
---|
689 | */
|
---|
690 | AnchorData *QGraphicsAnchorLayoutPrivate::addAnchorMaybeParallel(AnchorData *newAnchor, bool *feasible)
|
---|
691 | {
|
---|
692 | Orientation orientation = Orientation(newAnchor->orientation);
|
---|
693 | Graph<AnchorVertex, AnchorData> &g = graph[orientation];
|
---|
694 | *feasible = true;
|
---|
695 |
|
---|
696 | // If already exists one anchor where newAnchor is supposed to be, we create a parallel
|
---|
697 | // anchor.
|
---|
698 | if (AnchorData *oldAnchor = g.takeEdge(newAnchor->from, newAnchor->to)) {
|
---|
699 | ParallelAnchorData *parallel = new ParallelAnchorData(oldAnchor, newAnchor);
|
---|
700 |
|
---|
701 | // The parallel anchor will "replace" its children anchors in
|
---|
702 | // every center constraint that they appear.
|
---|
703 |
|
---|
704 | // ### If the dependent (center) anchors had reference(s) to their constraints, we
|
---|
705 | // could avoid traversing all the itemCenterConstraints.
|
---|
706 | QList<QSimplexConstraint *> &constraints = itemCenterConstraints[orientation];
|
---|
707 |
|
---|
708 | AnchorData *children[2] = { oldAnchor, newAnchor };
|
---|
709 | QList<QSimplexConstraint *> *childrenConstraints[2] = { ¶llel->m_firstConstraints,
|
---|
710 | ¶llel->m_secondConstraints };
|
---|
711 |
|
---|
712 | for (int i = 0; i < 2; ++i) {
|
---|
713 | AnchorData *child = children[i];
|
---|
714 | QList<QSimplexConstraint *> *childConstraints = childrenConstraints[i];
|
---|
715 |
|
---|
716 | // We need to fix the second child constraints if the parallel group will have the
|
---|
717 | // opposite direction of the second child anchor. For the point of view of external
|
---|
718 | // entities, this anchor was reversed. So if at some point we say that the parallel
|
---|
719 | // has a value of 20, this mean that the second child (when reversed) will be
|
---|
720 | // assigned -20.
|
---|
721 | const bool needsReverse = i == 1 && !parallel->secondForward();
|
---|
722 |
|
---|
723 | if (!child->isCenterAnchor)
|
---|
724 | continue;
|
---|
725 |
|
---|
726 | parallel->isCenterAnchor = true;
|
---|
727 |
|
---|
728 | for (int j = 0; j < constraints.count(); ++j) {
|
---|
729 | QSimplexConstraint *c = constraints[j];
|
---|
730 | if (c->variables.contains(child)) {
|
---|
731 | childConstraints->append(c);
|
---|
732 | qreal v = c->variables.take(child);
|
---|
733 | if (needsReverse)
|
---|
734 | v *= -1;
|
---|
735 | c->variables.insert(parallel, v);
|
---|
736 | }
|
---|
737 | }
|
---|
738 | }
|
---|
739 |
|
---|
740 | // At this point we can identify that the parallel anchor is not feasible, e.g. one
|
---|
741 | // anchor minimum size is bigger than the other anchor maximum size.
|
---|
742 | *feasible = parallel->calculateSizeHints();
|
---|
743 | newAnchor = parallel;
|
---|
744 | }
|
---|
745 |
|
---|
746 | g.createEdge(newAnchor->from, newAnchor->to, newAnchor);
|
---|
747 | return newAnchor;
|
---|
748 | }
|
---|
749 |
|
---|
750 | /*!
|
---|
751 | \internal
|
---|
752 |
|
---|
753 | Takes the sequence of vertices described by (\a before, \a vertices, \a after) and removes
|
---|
754 | all anchors connected to the vertices in \a vertices, returning one simplified anchor between
|
---|
755 | \a before and \a after.
|
---|
756 |
|
---|
757 | Note that this function doesn't add the created anchor to the graph. This should be done by
|
---|
758 | the caller.
|
---|
759 | */
|
---|
760 | static AnchorData *createSequence(Graph<AnchorVertex, AnchorData> *graph,
|
---|
761 | AnchorVertex *before,
|
---|
762 | const QVector<AnchorVertex*> &vertices,
|
---|
763 | AnchorVertex *after)
|
---|
764 | {
|
---|
765 | #if defined(QT_DEBUG) && 0
|
---|
766 | QString strVertices;
|
---|
767 | for (int i = 0; i < vertices.count(); ++i) {
|
---|
768 | strVertices += QString::fromAscii("%1 - ").arg(vertices.at(i)->toString());
|
---|
769 | }
|
---|
770 | QString strPath = QString::fromAscii("%1 - %2%3").arg(before->toString(), strVertices, after->toString());
|
---|
771 | qDebug("simplifying [%s] to [%s - %s]", qPrintable(strPath), qPrintable(before->toString()), qPrintable(after->toString()));
|
---|
772 | #endif
|
---|
773 |
|
---|
774 | AnchorVertex *prev = before;
|
---|
775 | QVector<AnchorData *> edges;
|
---|
776 |
|
---|
777 | // Take from the graph, the edges that will be simplificated
|
---|
778 | for (int i = 0; i < vertices.count(); ++i) {
|
---|
779 | AnchorVertex *next = vertices.at(i);
|
---|
780 | AnchorData *ad = graph->takeEdge(prev, next);
|
---|
781 | Q_ASSERT(ad);
|
---|
782 | edges.append(ad);
|
---|
783 | prev = next;
|
---|
784 | }
|
---|
785 |
|
---|
786 | // Take the last edge (not covered in the loop above)
|
---|
787 | AnchorData *ad = graph->takeEdge(vertices.last(), after);
|
---|
788 | Q_ASSERT(ad);
|
---|
789 | edges.append(ad);
|
---|
790 |
|
---|
791 | // Create sequence
|
---|
792 | SequentialAnchorData *sequence = new SequentialAnchorData(vertices, edges);
|
---|
793 | sequence->from = before;
|
---|
794 | sequence->to = after;
|
---|
795 |
|
---|
796 | sequence->calculateSizeHints();
|
---|
797 |
|
---|
798 | return sequence;
|
---|
799 | }
|
---|
800 |
|
---|
801 | /*!
|
---|
802 | \internal
|
---|
803 |
|
---|
804 | The purpose of this function is to simplify the graph.
|
---|
805 | Simplification serves two purposes:
|
---|
806 | 1. Reduce the number of edges in the graph, (thus the number of variables to the equation
|
---|
807 | solver is reduced, and the solver performs better).
|
---|
808 | 2. Be able to do distribution of sequences of edges more intelligently (esp. with sequential
|
---|
809 | anchors)
|
---|
810 |
|
---|
811 | It is essential that it must be possible to restore simplified anchors back to their "original"
|
---|
812 | form. This is done by restoreSimplifiedAnchor().
|
---|
813 |
|
---|
814 | There are two types of simplification that can be done:
|
---|
815 | 1. Sequential simplification
|
---|
816 | Sequential simplification means that all sequences of anchors will be merged into one single
|
---|
817 | anchor. Only anhcors that points in the same direction will be merged.
|
---|
818 | 2. Parallel simplification
|
---|
819 | If a simplified sequential anchor is about to be inserted between two vertices in the graph
|
---|
820 | and there already exist an anchor between those two vertices, a parallel anchor will be
|
---|
821 | created that serves as a placeholder for the sequential anchor and the anchor that was
|
---|
822 | already between the two vertices.
|
---|
823 |
|
---|
824 | The process of simplification can be described as:
|
---|
825 |
|
---|
826 | 1. Simplify all sequences of anchors into one anchor.
|
---|
827 | If no further simplification was done, go to (3)
|
---|
828 | - If there already exist an anchor where the sequential anchor is supposed to be inserted,
|
---|
829 | take that anchor out of the graph
|
---|
830 | - Then create a parallel anchor that holds the sequential anchor and the anchor just taken
|
---|
831 | out of the graph.
|
---|
832 | 2. Go to (1)
|
---|
833 | 3. Done
|
---|
834 |
|
---|
835 | When creating the parallel anchors, the algorithm might identify unfeasible situations. In this
|
---|
836 | case the simplification process stops and returns false. Otherwise returns true.
|
---|
837 | */
|
---|
838 | bool QGraphicsAnchorLayoutPrivate::simplifyGraph(Orientation orientation)
|
---|
839 | {
|
---|
840 | if (items.isEmpty())
|
---|
841 | return true;
|
---|
842 |
|
---|
843 | #if defined(QT_DEBUG) && 0
|
---|
844 | qDebug("Simplifying Graph for %s",
|
---|
845 | orientation == Horizontal ? "Horizontal" : "Vertical");
|
---|
846 |
|
---|
847 | static int count = 0;
|
---|
848 | if (orientation == Horizontal) {
|
---|
849 | count++;
|
---|
850 | dumpGraph(QString::fromAscii("%1-full").arg(count));
|
---|
851 | }
|
---|
852 | #endif
|
---|
853 |
|
---|
854 | // Vertex simplification
|
---|
855 | if (!simplifyVertices(orientation)) {
|
---|
856 | restoreVertices(orientation);
|
---|
857 | return false;
|
---|
858 | }
|
---|
859 |
|
---|
860 | // Anchor simplification
|
---|
861 | bool dirty;
|
---|
862 | bool feasible = true;
|
---|
863 | do {
|
---|
864 | dirty = simplifyGraphIteration(orientation, &feasible);
|
---|
865 | } while (dirty && feasible);
|
---|
866 |
|
---|
867 | // Note that if we are not feasible, we fallback and make sure that the graph is fully restored
|
---|
868 | if (!feasible) {
|
---|
869 | restoreSimplifiedGraph(orientation);
|
---|
870 | restoreVertices(orientation);
|
---|
871 | return false;
|
---|
872 | }
|
---|
873 |
|
---|
874 | #if defined(QT_DEBUG) && 0
|
---|
875 | dumpGraph(QString::fromAscii("%1-simplified-%2").arg(count).arg(
|
---|
876 | QString::fromAscii(orientation == Horizontal ? "Horizontal" : "Vertical")));
|
---|
877 | #endif
|
---|
878 |
|
---|
879 | return true;
|
---|
880 | }
|
---|
881 |
|
---|
882 | static AnchorVertex *replaceVertex_helper(AnchorData *data, AnchorVertex *oldV, AnchorVertex *newV)
|
---|
883 | {
|
---|
884 | AnchorVertex *other;
|
---|
885 | if (data->from == oldV) {
|
---|
886 | data->from = newV;
|
---|
887 | other = data->to;
|
---|
888 | } else {
|
---|
889 | data->to = newV;
|
---|
890 | other = data->from;
|
---|
891 | }
|
---|
892 | return other;
|
---|
893 | }
|
---|
894 |
|
---|
895 | bool QGraphicsAnchorLayoutPrivate::replaceVertex(Orientation orientation, AnchorVertex *oldV,
|
---|
896 | AnchorVertex *newV, const QList<AnchorData *> &edges)
|
---|
897 | {
|
---|
898 | Graph<AnchorVertex, AnchorData> &g = graph[orientation];
|
---|
899 | bool feasible = true;
|
---|
900 |
|
---|
901 | for (int i = 0; i < edges.count(); ++i) {
|
---|
902 | AnchorData *ad = edges[i];
|
---|
903 | AnchorVertex *otherV = replaceVertex_helper(ad, oldV, newV);
|
---|
904 |
|
---|
905 | #if defined(QT_DEBUG)
|
---|
906 | ad->name = QString::fromAscii("%1 --to--> %2").arg(ad->from->toString()).arg(ad->to->toString());
|
---|
907 | #endif
|
---|
908 |
|
---|
909 | bool newFeasible;
|
---|
910 | AnchorData *newAnchor = addAnchorMaybeParallel(ad, &newFeasible);
|
---|
911 | feasible &= newFeasible;
|
---|
912 |
|
---|
913 | if (newAnchor != ad) {
|
---|
914 | // A parallel was created, we mark that in the list of anchors created by vertex
|
---|
915 | // simplification. This is needed because we want to restore them in a separate step
|
---|
916 | // from the restoration of anchor simplification.
|
---|
917 | anchorsFromSimplifiedVertices[orientation].append(newAnchor);
|
---|
918 | }
|
---|
919 |
|
---|
920 | g.takeEdge(oldV, otherV);
|
---|
921 | }
|
---|
922 |
|
---|
923 | return feasible;
|
---|
924 | }
|
---|
925 |
|
---|
926 | /*!
|
---|
927 | \internal
|
---|
928 | */
|
---|
929 | bool QGraphicsAnchorLayoutPrivate::simplifyVertices(Orientation orientation)
|
---|
930 | {
|
---|
931 | Q_Q(QGraphicsAnchorLayout);
|
---|
932 | Graph<AnchorVertex, AnchorData> &g = graph[orientation];
|
---|
933 |
|
---|
934 | // We'll walk through vertices
|
---|
935 | QStack<AnchorVertex *> stack;
|
---|
936 | stack.push(layoutFirstVertex[orientation]);
|
---|
937 | QSet<AnchorVertex *> visited;
|
---|
938 |
|
---|
939 | while (!stack.isEmpty()) {
|
---|
940 | AnchorVertex *v = stack.pop();
|
---|
941 | visited.insert(v);
|
---|
942 |
|
---|
943 | // Each adjacent of 'v' is a possible vertex to be merged. So we traverse all of
|
---|
944 | // them. Since once a merge is made, we might add new adjacents, and we don't want to
|
---|
945 | // pass two times through one adjacent. The 'index' is used to track our position.
|
---|
946 | QList<AnchorVertex *> adjacents = g.adjacentVertices(v);
|
---|
947 | int index = 0;
|
---|
948 |
|
---|
949 | while (index < adjacents.count()) {
|
---|
950 | AnchorVertex *next = adjacents.at(index);
|
---|
951 | index++;
|
---|
952 |
|
---|
953 | AnchorData *data = g.edgeData(v, next);
|
---|
954 | const bool bothLayoutVertices = v->m_item == q && next->m_item == q;
|
---|
955 | const bool zeroSized = !data->minSize && !data->maxSize;
|
---|
956 |
|
---|
957 | if (!bothLayoutVertices && zeroSized) {
|
---|
958 |
|
---|
959 | // Create a new vertex pair, note that we keep a list of those vertices so we can
|
---|
960 | // easily process them when restoring the graph.
|
---|
961 | AnchorVertexPair *newV = new AnchorVertexPair(v, next, data);
|
---|
962 | simplifiedVertices[orientation].append(newV);
|
---|
963 |
|
---|
964 | // Collect the anchors of both vertices, the new vertex pair will take their place
|
---|
965 | // in those anchors
|
---|
966 | const QList<AnchorVertex *> &vAdjacents = g.adjacentVertices(v);
|
---|
967 | const QList<AnchorVertex *> &nextAdjacents = g.adjacentVertices(next);
|
---|
968 |
|
---|
969 | for (int i = 0; i < vAdjacents.count(); ++i) {
|
---|
970 | AnchorVertex *adjacent = vAdjacents.at(i);
|
---|
971 | if (adjacent != next) {
|
---|
972 | AnchorData *ad = g.edgeData(v, adjacent);
|
---|
973 | newV->m_firstAnchors.append(ad);
|
---|
974 | }
|
---|
975 | }
|
---|
976 |
|
---|
977 | for (int i = 0; i < nextAdjacents.count(); ++i) {
|
---|
978 | AnchorVertex *adjacent = nextAdjacents.at(i);
|
---|
979 | if (adjacent != v) {
|
---|
980 | AnchorData *ad = g.edgeData(next, adjacent);
|
---|
981 | newV->m_secondAnchors.append(ad);
|
---|
982 |
|
---|
983 | // We'll also add new vertices to the adjacent list of the new 'v', to be
|
---|
984 | // created as a vertex pair and replace the current one.
|
---|
985 | if (!adjacents.contains(adjacent))
|
---|
986 | adjacents.append(adjacent);
|
---|
987 | }
|
---|
988 | }
|
---|
989 |
|
---|
990 | // ### merge this loop into the ones that calculated m_firstAnchors/m_secondAnchors?
|
---|
991 | // Make newV take the place of v and next
|
---|
992 | bool feasible = replaceVertex(orientation, v, newV, newV->m_firstAnchors);
|
---|
993 | feasible &= replaceVertex(orientation, next, newV, newV->m_secondAnchors);
|
---|
994 |
|
---|
995 | // Update the layout vertex information if one of the vertices is a layout vertex.
|
---|
996 | AnchorVertex *layoutVertex = 0;
|
---|
997 | if (v->m_item == q)
|
---|
998 | layoutVertex = v;
|
---|
999 | else if (next->m_item == q)
|
---|
1000 | layoutVertex = next;
|
---|
1001 |
|
---|
1002 | if (layoutVertex) {
|
---|
1003 | // Layout vertices always have m_item == q...
|
---|
1004 | newV->m_item = q;
|
---|
1005 | changeLayoutVertex(orientation, layoutVertex, newV);
|
---|
1006 | }
|
---|
1007 |
|
---|
1008 | g.takeEdge(v, next);
|
---|
1009 |
|
---|
1010 | // If a non-feasibility is found, we leave early and cancel the simplification
|
---|
1011 | if (!feasible)
|
---|
1012 | return false;
|
---|
1013 |
|
---|
1014 | v = newV;
|
---|
1015 | visited.insert(newV);
|
---|
1016 |
|
---|
1017 | } else if (!visited.contains(next) && !stack.contains(next)) {
|
---|
1018 | // If the adjacent is not fit for merge and it wasn't visited by the outermost
|
---|
1019 | // loop, we add it to the stack.
|
---|
1020 | stack.push(next);
|
---|
1021 | }
|
---|
1022 | }
|
---|
1023 | }
|
---|
1024 |
|
---|
1025 | return true;
|
---|
1026 | }
|
---|
1027 |
|
---|
1028 | /*!
|
---|
1029 | \internal
|
---|
1030 |
|
---|
1031 | One iteration of the simplification algorithm. Returns true if another iteration is needed.
|
---|
1032 |
|
---|
1033 | The algorithm walks the graph in depth-first order, and only collects vertices that has two
|
---|
1034 | edges connected to it. If the vertex does not have two edges or if it is a layout edge, it
|
---|
1035 | will take all the previously collected vertices and try to create a simplified sequential
|
---|
1036 | anchor representing all the previously collected vertices. Once the simplified anchor is
|
---|
1037 | inserted, the collected list is cleared in order to find the next sequence to simplify.
|
---|
1038 |
|
---|
1039 | Note that there are some catches to this that are not covered by the above explanation, see
|
---|
1040 | the function comments for more details.
|
---|
1041 | */
|
---|
1042 | bool QGraphicsAnchorLayoutPrivate::simplifyGraphIteration(QGraphicsAnchorLayoutPrivate::Orientation orientation,
|
---|
1043 | bool *feasible)
|
---|
1044 | {
|
---|
1045 | Q_Q(QGraphicsAnchorLayout);
|
---|
1046 | Graph<AnchorVertex, AnchorData> &g = graph[orientation];
|
---|
1047 |
|
---|
1048 | QSet<AnchorVertex *> visited;
|
---|
1049 | QStack<QPair<AnchorVertex *, AnchorVertex *> > stack;
|
---|
1050 | stack.push(qMakePair(static_cast<AnchorVertex *>(0), layoutFirstVertex[orientation]));
|
---|
1051 | QVector<AnchorVertex*> candidates;
|
---|
1052 |
|
---|
1053 | // Walk depth-first, in the stack we store start of the candidate sequence (beforeSequence)
|
---|
1054 | // and the vertex to be visited.
|
---|
1055 | while (!stack.isEmpty()) {
|
---|
1056 | QPair<AnchorVertex *, AnchorVertex *> pair = stack.pop();
|
---|
1057 | AnchorVertex *beforeSequence = pair.first;
|
---|
1058 | AnchorVertex *v = pair.second;
|
---|
1059 |
|
---|
1060 | // The basic idea is to determine whether we found an end of sequence,
|
---|
1061 | // if that's the case, we stop adding vertices to the candidate list
|
---|
1062 | // and do a simplification step.
|
---|
1063 | //
|
---|
1064 | // A vertex can trigger an end of sequence if
|
---|
1065 | // (a) it is a layout vertex, we don't simplify away the layout vertices;
|
---|
1066 | // (b) it does not have exactly 2 adjacents;
|
---|
1067 | // (c) its next adjacent is already visited (a cycle in the graph).
|
---|
1068 | // (d) the next anchor is a center anchor.
|
---|
1069 |
|
---|
1070 | const QList<AnchorVertex *> &adjacents = g.adjacentVertices(v);
|
---|
1071 | const bool isLayoutVertex = v->m_item == q;
|
---|
1072 | AnchorVertex *afterSequence = v;
|
---|
1073 | bool endOfSequence = false;
|
---|
1074 |
|
---|
1075 | //
|
---|
1076 | // Identify the end cases.
|
---|
1077 | //
|
---|
1078 |
|
---|
1079 | // Identifies cases (a) and (b)
|
---|
1080 | endOfSequence = isLayoutVertex || adjacents.count() != 2;
|
---|
1081 |
|
---|
1082 | if (!endOfSequence) {
|
---|
1083 | // This is a tricky part. We peek at the next vertex to find out whether
|
---|
1084 | //
|
---|
1085 | // - we already visited the next vertex (c);
|
---|
1086 | // - the next anchor is a center (d).
|
---|
1087 | //
|
---|
1088 | // Those are needed to identify the remaining end of sequence cases. Note that unlike
|
---|
1089 | // (a) and (b), we preempt the end of sequence by looking into the next vertex.
|
---|
1090 |
|
---|
1091 | // Peek at the next vertex
|
---|
1092 | AnchorVertex *after;
|
---|
1093 | if (candidates.isEmpty())
|
---|
1094 | after = (beforeSequence == adjacents.last() ? adjacents.first() : adjacents.last());
|
---|
1095 | else
|
---|
1096 | after = (candidates.last() == adjacents.last() ? adjacents.first() : adjacents.last());
|
---|
1097 |
|
---|
1098 | // ### At this point we assumed that candidates will not contain 'after', this may not hold
|
---|
1099 | // when simplifying FLOATing anchors.
|
---|
1100 | Q_ASSERT(!candidates.contains(after));
|
---|
1101 |
|
---|
1102 | const AnchorData *data = g.edgeData(v, after);
|
---|
1103 | Q_ASSERT(data);
|
---|
1104 | const bool cycleFound = visited.contains(after);
|
---|
1105 |
|
---|
1106 | // Now cases (c) and (d)...
|
---|
1107 | endOfSequence = cycleFound || data->isCenterAnchor;
|
---|
1108 |
|
---|
1109 | if (!endOfSequence) {
|
---|
1110 | // If it's not an end of sequence, then the vertex didn't trigger neither of the
|
---|
1111 | // previously three cases, so it can be added to the candidates list.
|
---|
1112 | candidates.append(v);
|
---|
1113 | } else if (cycleFound && (beforeSequence != after)) {
|
---|
1114 | afterSequence = after;
|
---|
1115 | candidates.append(v);
|
---|
1116 | }
|
---|
1117 | }
|
---|
1118 |
|
---|
1119 | //
|
---|
1120 | // Add next non-visited vertices to the stack.
|
---|
1121 | //
|
---|
1122 | for (int i = 0; i < adjacents.count(); ++i) {
|
---|
1123 | AnchorVertex *next = adjacents.at(i);
|
---|
1124 | if (visited.contains(next))
|
---|
1125 | continue;
|
---|
1126 |
|
---|
1127 | // If current vertex is an end of sequence, and it'll reset the candidates list. So
|
---|
1128 | // the next vertices will build candidates lists with the current vertex as 'before'
|
---|
1129 | // vertex. If it's not an end of sequence, we keep the original 'before' vertex,
|
---|
1130 | // since we are keeping the candidates list.
|
---|
1131 | if (endOfSequence)
|
---|
1132 | stack.push(qMakePair(v, next));
|
---|
1133 | else
|
---|
1134 | stack.push(qMakePair(beforeSequence, next));
|
---|
1135 | }
|
---|
1136 |
|
---|
1137 | visited.insert(v);
|
---|
1138 |
|
---|
1139 | if (!endOfSequence || candidates.isEmpty())
|
---|
1140 | continue;
|
---|
1141 |
|
---|
1142 | //
|
---|
1143 | // Create a sequence for (beforeSequence, candidates, afterSequence).
|
---|
1144 | //
|
---|
1145 |
|
---|
1146 | // One restriction we have is to not simplify half of an anchor and let the other half
|
---|
1147 | // unsimplified. So we remove center edges before and after the sequence.
|
---|
1148 | const AnchorData *firstAnchor = g.edgeData(beforeSequence, candidates.first());
|
---|
1149 | if (firstAnchor->isCenterAnchor) {
|
---|
1150 | beforeSequence = candidates.first();
|
---|
1151 | candidates.remove(0);
|
---|
1152 |
|
---|
1153 | // If there's not candidates to be simplified, leave.
|
---|
1154 | if (candidates.isEmpty())
|
---|
1155 | continue;
|
---|
1156 | }
|
---|
1157 |
|
---|
1158 | const AnchorData *lastAnchor = g.edgeData(candidates.last(), afterSequence);
|
---|
1159 | if (lastAnchor->isCenterAnchor) {
|
---|
1160 | afterSequence = candidates.last();
|
---|
1161 | candidates.remove(candidates.count() - 1);
|
---|
1162 |
|
---|
1163 | if (candidates.isEmpty())
|
---|
1164 | continue;
|
---|
1165 | }
|
---|
1166 |
|
---|
1167 | //
|
---|
1168 | // Add the sequence to the graph.
|
---|
1169 | //
|
---|
1170 |
|
---|
1171 | AnchorData *sequence = createSequence(&g, beforeSequence, candidates, afterSequence);
|
---|
1172 |
|
---|
1173 | // If 'beforeSequence' and 'afterSequence' already had an anchor between them, we'll
|
---|
1174 | // create a parallel anchor between the new sequence and the old anchor.
|
---|
1175 | bool newFeasible;
|
---|
1176 | AnchorData *newAnchor = addAnchorMaybeParallel(sequence, &newFeasible);
|
---|
1177 |
|
---|
1178 | if (!newFeasible) {
|
---|
1179 | *feasible = false;
|
---|
1180 | return false;
|
---|
1181 | }
|
---|
1182 |
|
---|
1183 | // When a new parallel anchor is create in the graph, we finish the iteration and return
|
---|
1184 | // true to indicate a new iteration is needed. This happens because a parallel anchor
|
---|
1185 | // changes the number of adjacents one vertex has, possibly opening up oportunities for
|
---|
1186 | // building candidate lists (when adjacents == 2).
|
---|
1187 | if (newAnchor != sequence)
|
---|
1188 | return true;
|
---|
1189 |
|
---|
1190 | // If there was no parallel simplification, we'll keep walking the graph. So we clear the
|
---|
1191 | // candidates list to start again.
|
---|
1192 | candidates.clear();
|
---|
1193 | }
|
---|
1194 |
|
---|
1195 | return false;
|
---|
1196 | }
|
---|
1197 |
|
---|
1198 | void QGraphicsAnchorLayoutPrivate::restoreSimplifiedAnchor(AnchorData *edge)
|
---|
1199 | {
|
---|
1200 | #if 0
|
---|
1201 | static const char *anchortypes[] = {"Normal",
|
---|
1202 | "Sequential",
|
---|
1203 | "Parallel"};
|
---|
1204 | qDebug("Restoring %s edge.", anchortypes[int(edge->type)]);
|
---|
1205 | #endif
|
---|
1206 |
|
---|
1207 | Graph<AnchorVertex, AnchorData> &g = graph[edge->orientation];
|
---|
1208 |
|
---|
1209 | if (edge->type == AnchorData::Normal) {
|
---|
1210 | g.createEdge(edge->from, edge->to, edge);
|
---|
1211 |
|
---|
1212 | } else if (edge->type == AnchorData::Sequential) {
|
---|
1213 | SequentialAnchorData *sequence = static_cast<SequentialAnchorData *>(edge);
|
---|
1214 |
|
---|
1215 | for (int i = 0; i < sequence->m_edges.count(); ++i) {
|
---|
1216 | AnchorData *data = sequence->m_edges.at(i);
|
---|
1217 | restoreSimplifiedAnchor(data);
|
---|
1218 | }
|
---|
1219 |
|
---|
1220 | delete sequence;
|
---|
1221 |
|
---|
1222 | } else if (edge->type == AnchorData::Parallel) {
|
---|
1223 |
|
---|
1224 | // Skip parallel anchors that were created by vertex simplification, they will be processed
|
---|
1225 | // later, when restoring vertex simplification.
|
---|
1226 | // ### we could improve this check bit having a bit inside 'edge'
|
---|
1227 | if (anchorsFromSimplifiedVertices[edge->orientation].contains(edge))
|
---|
1228 | return;
|
---|
1229 |
|
---|
1230 | ParallelAnchorData* parallel = static_cast<ParallelAnchorData*>(edge);
|
---|
1231 | restoreSimplifiedConstraints(parallel);
|
---|
1232 |
|
---|
1233 | // ### Because of the way parallel anchors are created in the anchor simplification
|
---|
1234 | // algorithm, we know that one of these will be a sequence, so it'll be safe if the other
|
---|
1235 | // anchor create an edge between the same vertices as the parallel.
|
---|
1236 | Q_ASSERT(parallel->firstEdge->type == AnchorData::Sequential
|
---|
1237 | || parallel->secondEdge->type == AnchorData::Sequential);
|
---|
1238 | restoreSimplifiedAnchor(parallel->firstEdge);
|
---|
1239 | restoreSimplifiedAnchor(parallel->secondEdge);
|
---|
1240 |
|
---|
1241 | delete parallel;
|
---|
1242 | }
|
---|
1243 | }
|
---|
1244 |
|
---|
1245 | void QGraphicsAnchorLayoutPrivate::restoreSimplifiedConstraints(ParallelAnchorData *parallel)
|
---|
1246 | {
|
---|
1247 | if (!parallel->isCenterAnchor)
|
---|
1248 | return;
|
---|
1249 |
|
---|
1250 | for (int i = 0; i < parallel->m_firstConstraints.count(); ++i) {
|
---|
1251 | QSimplexConstraint *c = parallel->m_firstConstraints.at(i);
|
---|
1252 | qreal v = c->variables[parallel];
|
---|
1253 | c->variables.remove(parallel);
|
---|
1254 | c->variables.insert(parallel->firstEdge, v);
|
---|
1255 | }
|
---|
1256 |
|
---|
1257 | // When restoring, we might have to revert constraints back. See comments on
|
---|
1258 | // addAnchorMaybeParallel().
|
---|
1259 | const bool needsReverse = !parallel->secondForward();
|
---|
1260 |
|
---|
1261 | for (int i = 0; i < parallel->m_secondConstraints.count(); ++i) {
|
---|
1262 | QSimplexConstraint *c = parallel->m_secondConstraints.at(i);
|
---|
1263 | qreal v = c->variables[parallel];
|
---|
1264 | if (needsReverse)
|
---|
1265 | v *= -1;
|
---|
1266 | c->variables.remove(parallel);
|
---|
1267 | c->variables.insert(parallel->secondEdge, v);
|
---|
1268 | }
|
---|
1269 | }
|
---|
1270 |
|
---|
1271 | void QGraphicsAnchorLayoutPrivate::restoreSimplifiedGraph(Orientation orientation)
|
---|
1272 | {
|
---|
1273 | #if 0
|
---|
1274 | qDebug("Restoring Simplified Graph for %s",
|
---|
1275 | orientation == Horizontal ? "Horizontal" : "Vertical");
|
---|
1276 | #endif
|
---|
1277 |
|
---|
1278 | // Restore anchor simplification
|
---|
1279 | Graph<AnchorVertex, AnchorData> &g = graph[orientation];
|
---|
1280 | QList<QPair<AnchorVertex*, AnchorVertex*> > connections = g.connections();
|
---|
1281 | for (int i = 0; i < connections.count(); ++i) {
|
---|
1282 | AnchorVertex *v1 = connections.at(i).first;
|
---|
1283 | AnchorVertex *v2 = connections.at(i).second;
|
---|
1284 | AnchorData *edge = g.edgeData(v1, v2);
|
---|
1285 |
|
---|
1286 | // We restore only sequential anchors and parallels that were not created by
|
---|
1287 | // vertex simplification.
|
---|
1288 | if (edge->type == AnchorData::Sequential
|
---|
1289 | || (edge->type == AnchorData::Parallel &&
|
---|
1290 | !anchorsFromSimplifiedVertices[orientation].contains(edge))) {
|
---|
1291 |
|
---|
1292 | g.takeEdge(v1, v2);
|
---|
1293 | restoreSimplifiedAnchor(edge);
|
---|
1294 | }
|
---|
1295 | }
|
---|
1296 |
|
---|
1297 | restoreVertices(orientation);
|
---|
1298 | }
|
---|
1299 |
|
---|
1300 | void QGraphicsAnchorLayoutPrivate::restoreVertices(Orientation orientation)
|
---|
1301 | {
|
---|
1302 | Q_Q(QGraphicsAnchorLayout);
|
---|
1303 |
|
---|
1304 | Graph<AnchorVertex, AnchorData> &g = graph[orientation];
|
---|
1305 | QList<AnchorVertexPair *> &toRestore = simplifiedVertices[orientation];
|
---|
1306 |
|
---|
1307 | // Since we keep a list of parallel anchors and vertices that were created during vertex
|
---|
1308 | // simplification, we can now iterate on those lists instead of traversing the graph
|
---|
1309 | // recursively.
|
---|
1310 |
|
---|
1311 | // First, restore the constraints changed when we created parallel anchors. Note that this
|
---|
1312 | // works at this point because the constraints doesn't depend on vertex information and at
|
---|
1313 | // this point it's always safe to identify whether the second child is forward or backwards.
|
---|
1314 | // In the next step, we'll change the anchors vertices so that would not be possible anymore.
|
---|
1315 | QList<AnchorData *> ¶llelAnchors = anchorsFromSimplifiedVertices[orientation];
|
---|
1316 |
|
---|
1317 | for (int i = parallelAnchors.count() - 1; i >= 0; --i) {
|
---|
1318 | ParallelAnchorData *parallel = static_cast<ParallelAnchorData *>(parallelAnchors.at(i));
|
---|
1319 | restoreSimplifiedConstraints(parallel);
|
---|
1320 | }
|
---|
1321 |
|
---|
1322 | // Then, we will restore the vertices in the inverse order of creation, this way we ensure that
|
---|
1323 | // the vertex being restored was not wrapped by another simplification.
|
---|
1324 | for (int i = toRestore.count() - 1; i >= 0; --i) {
|
---|
1325 | AnchorVertexPair *pair = toRestore.at(i);
|
---|
1326 | QList<AnchorVertex *> adjacents = g.adjacentVertices(pair);
|
---|
1327 |
|
---|
1328 | // Restore the removed edge, this will also restore both vertices 'first' and 'second' to
|
---|
1329 | // the graph structure.
|
---|
1330 | AnchorVertex *first = pair->m_first;
|
---|
1331 | AnchorVertex *second = pair->m_second;
|
---|
1332 | g.createEdge(first, second, pair->m_removedAnchor);
|
---|
1333 |
|
---|
1334 | // Restore the anchors for the first child vertex
|
---|
1335 | for (int j = 0; j < pair->m_firstAnchors.count(); ++j) {
|
---|
1336 | AnchorData *ad = pair->m_firstAnchors.at(j);
|
---|
1337 | Q_ASSERT(ad->from == pair || ad->to == pair);
|
---|
1338 |
|
---|
1339 | replaceVertex_helper(ad, pair, first);
|
---|
1340 | g.createEdge(ad->from, ad->to, ad);
|
---|
1341 | }
|
---|
1342 |
|
---|
1343 | // Restore the anchors for the second child vertex
|
---|
1344 | for (int j = 0; j < pair->m_secondAnchors.count(); ++j) {
|
---|
1345 | AnchorData *ad = pair->m_secondAnchors.at(j);
|
---|
1346 | Q_ASSERT(ad->from == pair || ad->to == pair);
|
---|
1347 |
|
---|
1348 | replaceVertex_helper(ad, pair, second);
|
---|
1349 | g.createEdge(ad->from, ad->to, ad);
|
---|
1350 | }
|
---|
1351 |
|
---|
1352 | for (int j = 0; j < adjacents.count(); ++j) {
|
---|
1353 | g.takeEdge(pair, adjacents.at(j));
|
---|
1354 | }
|
---|
1355 |
|
---|
1356 | // The pair simplified a layout vertex, so place back the correct vertex in the variable
|
---|
1357 | // that track layout vertices
|
---|
1358 | if (pair->m_item == q) {
|
---|
1359 | AnchorVertex *layoutVertex = first->m_item == q ? first : second;
|
---|
1360 | Q_ASSERT(layoutVertex->m_item == q);
|
---|
1361 | changeLayoutVertex(orientation, pair, layoutVertex);
|
---|
1362 | }
|
---|
1363 |
|
---|
1364 | delete pair;
|
---|
1365 | }
|
---|
1366 | qDeleteAll(parallelAnchors);
|
---|
1367 | parallelAnchors.clear();
|
---|
1368 | toRestore.clear();
|
---|
1369 | }
|
---|
1370 |
|
---|
1371 | QGraphicsAnchorLayoutPrivate::Orientation
|
---|
1372 | QGraphicsAnchorLayoutPrivate::edgeOrientation(Qt::AnchorPoint edge)
|
---|
1373 | {
|
---|
1374 | return edge > Qt::AnchorRight ? Vertical : Horizontal;
|
---|
1375 | }
|
---|
1376 |
|
---|
1377 | /*!
|
---|
1378 | \internal
|
---|
1379 |
|
---|
1380 | Create internal anchors to connect the layout edges (Left to Right and
|
---|
1381 | Top to Bottom).
|
---|
1382 |
|
---|
1383 | These anchors doesn't have size restrictions, that will be enforced by
|
---|
1384 | other anchors and items in the layout.
|
---|
1385 | */
|
---|
1386 | void QGraphicsAnchorLayoutPrivate::createLayoutEdges()
|
---|
1387 | {
|
---|
1388 | Q_Q(QGraphicsAnchorLayout);
|
---|
1389 | QGraphicsLayoutItem *layout = q;
|
---|
1390 |
|
---|
1391 | // Horizontal
|
---|
1392 | AnchorData *data = new AnchorData;
|
---|
1393 | addAnchor_helper(layout, Qt::AnchorLeft, layout,
|
---|
1394 | Qt::AnchorRight, data);
|
---|
1395 | data->maxSize = QWIDGETSIZE_MAX;
|
---|
1396 |
|
---|
1397 | // Save a reference to layout vertices
|
---|
1398 | layoutFirstVertex[Horizontal] = internalVertex(layout, Qt::AnchorLeft);
|
---|
1399 | layoutCentralVertex[Horizontal] = 0;
|
---|
1400 | layoutLastVertex[Horizontal] = internalVertex(layout, Qt::AnchorRight);
|
---|
1401 |
|
---|
1402 | // Vertical
|
---|
1403 | data = new AnchorData;
|
---|
1404 | addAnchor_helper(layout, Qt::AnchorTop, layout,
|
---|
1405 | Qt::AnchorBottom, data);
|
---|
1406 | data->maxSize = QWIDGETSIZE_MAX;
|
---|
1407 |
|
---|
1408 | // Save a reference to layout vertices
|
---|
1409 | layoutFirstVertex[Vertical] = internalVertex(layout, Qt::AnchorTop);
|
---|
1410 | layoutCentralVertex[Vertical] = 0;
|
---|
1411 | layoutLastVertex[Vertical] = internalVertex(layout, Qt::AnchorBottom);
|
---|
1412 | }
|
---|
1413 |
|
---|
1414 | void QGraphicsAnchorLayoutPrivate::deleteLayoutEdges()
|
---|
1415 | {
|
---|
1416 | Q_Q(QGraphicsAnchorLayout);
|
---|
1417 |
|
---|
1418 | Q_ASSERT(!internalVertex(q, Qt::AnchorHorizontalCenter));
|
---|
1419 | Q_ASSERT(!internalVertex(q, Qt::AnchorVerticalCenter));
|
---|
1420 |
|
---|
1421 | removeAnchor_helper(internalVertex(q, Qt::AnchorLeft),
|
---|
1422 | internalVertex(q, Qt::AnchorRight));
|
---|
1423 | removeAnchor_helper(internalVertex(q, Qt::AnchorTop),
|
---|
1424 | internalVertex(q, Qt::AnchorBottom));
|
---|
1425 | }
|
---|
1426 |
|
---|
1427 | void QGraphicsAnchorLayoutPrivate::createItemEdges(QGraphicsLayoutItem *item)
|
---|
1428 | {
|
---|
1429 | items.append(item);
|
---|
1430 |
|
---|
1431 | // Create horizontal and vertical internal anchors for the item and
|
---|
1432 | // refresh its size hint / policy values.
|
---|
1433 | AnchorData *data = new AnchorData;
|
---|
1434 | addAnchor_helper(item, Qt::AnchorLeft, item, Qt::AnchorRight, data);
|
---|
1435 | data->refreshSizeHints();
|
---|
1436 |
|
---|
1437 | data = new AnchorData;
|
---|
1438 | addAnchor_helper(item, Qt::AnchorTop, item, Qt::AnchorBottom, data);
|
---|
1439 | data->refreshSizeHints();
|
---|
1440 | }
|
---|
1441 |
|
---|
1442 | /*!
|
---|
1443 | \internal
|
---|
1444 |
|
---|
1445 | By default, each item in the layout is represented internally as
|
---|
1446 | a single anchor in each direction. For instance, from Left to Right.
|
---|
1447 |
|
---|
1448 | However, to support anchorage of items to the center of items, we
|
---|
1449 | must split this internal anchor into two half-anchors. From Left
|
---|
1450 | to Center and then from Center to Right, with the restriction that
|
---|
1451 | these anchors must have the same time at all times.
|
---|
1452 | */
|
---|
1453 | void QGraphicsAnchorLayoutPrivate::createCenterAnchors(
|
---|
1454 | QGraphicsLayoutItem *item, Qt::AnchorPoint centerEdge)
|
---|
1455 | {
|
---|
1456 | Q_Q(QGraphicsAnchorLayout);
|
---|
1457 |
|
---|
1458 | Orientation orientation;
|
---|
1459 | switch (centerEdge) {
|
---|
1460 | case Qt::AnchorHorizontalCenter:
|
---|
1461 | orientation = Horizontal;
|
---|
1462 | break;
|
---|
1463 | case Qt::AnchorVerticalCenter:
|
---|
1464 | orientation = Vertical;
|
---|
1465 | break;
|
---|
1466 | default:
|
---|
1467 | // Don't create center edges unless needed
|
---|
1468 | return;
|
---|
1469 | }
|
---|
1470 |
|
---|
1471 | // Check if vertex already exists
|
---|
1472 | if (internalVertex(item, centerEdge))
|
---|
1473 | return;
|
---|
1474 |
|
---|
1475 | // Orientation code
|
---|
1476 | Qt::AnchorPoint firstEdge;
|
---|
1477 | Qt::AnchorPoint lastEdge;
|
---|
1478 |
|
---|
1479 | if (orientation == Horizontal) {
|
---|
1480 | firstEdge = Qt::AnchorLeft;
|
---|
1481 | lastEdge = Qt::AnchorRight;
|
---|
1482 | } else {
|
---|
1483 | firstEdge = Qt::AnchorTop;
|
---|
1484 | lastEdge = Qt::AnchorBottom;
|
---|
1485 | }
|
---|
1486 |
|
---|
1487 | AnchorVertex *first = internalVertex(item, firstEdge);
|
---|
1488 | AnchorVertex *last = internalVertex(item, lastEdge);
|
---|
1489 | Q_ASSERT(first && last);
|
---|
1490 |
|
---|
1491 | // Create new anchors
|
---|
1492 | QSimplexConstraint *c = new QSimplexConstraint;
|
---|
1493 |
|
---|
1494 | AnchorData *data = new AnchorData;
|
---|
1495 | c->variables.insert(data, 1.0);
|
---|
1496 | addAnchor_helper(item, firstEdge, item, centerEdge, data);
|
---|
1497 | data->isCenterAnchor = true;
|
---|
1498 | data->dependency = AnchorData::Master;
|
---|
1499 | data->refreshSizeHints();
|
---|
1500 |
|
---|
1501 | data = new AnchorData;
|
---|
1502 | c->variables.insert(data, -1.0);
|
---|
1503 | addAnchor_helper(item, centerEdge, item, lastEdge, data);
|
---|
1504 | data->isCenterAnchor = true;
|
---|
1505 | data->dependency = AnchorData::Slave;
|
---|
1506 | data->refreshSizeHints();
|
---|
1507 |
|
---|
1508 | itemCenterConstraints[orientation].append(c);
|
---|
1509 |
|
---|
1510 | // Remove old one
|
---|
1511 | removeAnchor_helper(first, last);
|
---|
1512 |
|
---|
1513 | if (item == q) {
|
---|
1514 | layoutCentralVertex[orientation] = internalVertex(q, centerEdge);
|
---|
1515 | }
|
---|
1516 | }
|
---|
1517 |
|
---|
1518 | void QGraphicsAnchorLayoutPrivate::removeCenterAnchors(
|
---|
1519 | QGraphicsLayoutItem *item, Qt::AnchorPoint centerEdge,
|
---|
1520 | bool substitute)
|
---|
1521 | {
|
---|
1522 | Q_Q(QGraphicsAnchorLayout);
|
---|
1523 |
|
---|
1524 | Orientation orientation;
|
---|
1525 | switch (centerEdge) {
|
---|
1526 | case Qt::AnchorHorizontalCenter:
|
---|
1527 | orientation = Horizontal;
|
---|
1528 | break;
|
---|
1529 | case Qt::AnchorVerticalCenter:
|
---|
1530 | orientation = Vertical;
|
---|
1531 | break;
|
---|
1532 | default:
|
---|
1533 | // Don't remove edges that not the center ones
|
---|
1534 | return;
|
---|
1535 | }
|
---|
1536 |
|
---|
1537 | // Orientation code
|
---|
1538 | Qt::AnchorPoint firstEdge;
|
---|
1539 | Qt::AnchorPoint lastEdge;
|
---|
1540 |
|
---|
1541 | if (orientation == Horizontal) {
|
---|
1542 | firstEdge = Qt::AnchorLeft;
|
---|
1543 | lastEdge = Qt::AnchorRight;
|
---|
1544 | } else {
|
---|
1545 | firstEdge = Qt::AnchorTop;
|
---|
1546 | lastEdge = Qt::AnchorBottom;
|
---|
1547 | }
|
---|
1548 |
|
---|
1549 | AnchorVertex *center = internalVertex(item, centerEdge);
|
---|
1550 | if (!center)
|
---|
1551 | return;
|
---|
1552 | AnchorVertex *first = internalVertex(item, firstEdge);
|
---|
1553 |
|
---|
1554 | Q_ASSERT(first);
|
---|
1555 | Q_ASSERT(center);
|
---|
1556 |
|
---|
1557 | Graph<AnchorVertex, AnchorData> &g = graph[orientation];
|
---|
1558 |
|
---|
1559 |
|
---|
1560 | AnchorData *oldData = g.edgeData(first, center);
|
---|
1561 | // Remove center constraint
|
---|
1562 | for (int i = itemCenterConstraints[orientation].count() - 1; i >= 0; --i) {
|
---|
1563 | if (itemCenterConstraints[orientation].at(i)->variables.contains(oldData)) {
|
---|
1564 | delete itemCenterConstraints[orientation].takeAt(i);
|
---|
1565 | break;
|
---|
1566 | }
|
---|
1567 | }
|
---|
1568 |
|
---|
1569 | if (substitute) {
|
---|
1570 | // Create the new anchor that should substitute the left-center-right anchors.
|
---|
1571 | AnchorData *data = new AnchorData;
|
---|
1572 | addAnchor_helper(item, firstEdge, item, lastEdge, data);
|
---|
1573 | data->refreshSizeHints();
|
---|
1574 |
|
---|
1575 | // Remove old anchors
|
---|
1576 | removeAnchor_helper(first, center);
|
---|
1577 | removeAnchor_helper(center, internalVertex(item, lastEdge));
|
---|
1578 |
|
---|
1579 | } else {
|
---|
1580 | // this is only called from removeAnchors()
|
---|
1581 | // first, remove all non-internal anchors
|
---|
1582 | QList<AnchorVertex*> adjacents = g.adjacentVertices(center);
|
---|
1583 | for (int i = 0; i < adjacents.count(); ++i) {
|
---|
1584 | AnchorVertex *v = adjacents.at(i);
|
---|
1585 | if (v->m_item != item) {
|
---|
1586 | removeAnchor_helper(center, internalVertex(v->m_item, v->m_edge));
|
---|
1587 | }
|
---|
1588 | }
|
---|
1589 | // when all non-internal anchors is removed it will automatically merge the
|
---|
1590 | // center anchor into a left-right (or top-bottom) anchor. We must also delete that.
|
---|
1591 | // by this time, the center vertex is deleted and merged into a non-centered internal anchor
|
---|
1592 | removeAnchor_helper(first, internalVertex(item, lastEdge));
|
---|
1593 | }
|
---|
1594 |
|
---|
1595 | if (item == q) {
|
---|
1596 | layoutCentralVertex[orientation] = 0;
|
---|
1597 | }
|
---|
1598 | }
|
---|
1599 |
|
---|
1600 |
|
---|
1601 | void QGraphicsAnchorLayoutPrivate::removeCenterConstraints(QGraphicsLayoutItem *item,
|
---|
1602 | Orientation orientation)
|
---|
1603 | {
|
---|
1604 | // Remove the item center constraints associated to this item
|
---|
1605 | // ### This is a temporary solution. We should probably use a better
|
---|
1606 | // data structure to hold items and/or their associated constraints
|
---|
1607 | // so that we can remove those easily
|
---|
1608 |
|
---|
1609 | AnchorVertex *first = internalVertex(item, orientation == Horizontal ?
|
---|
1610 | Qt::AnchorLeft :
|
---|
1611 | Qt::AnchorTop);
|
---|
1612 | AnchorVertex *center = internalVertex(item, orientation == Horizontal ?
|
---|
1613 | Qt::AnchorHorizontalCenter :
|
---|
1614 | Qt::AnchorVerticalCenter);
|
---|
1615 |
|
---|
1616 | // Skip if no center constraints exist
|
---|
1617 | if (!center)
|
---|
1618 | return;
|
---|
1619 |
|
---|
1620 | Q_ASSERT(first);
|
---|
1621 | AnchorData *internalAnchor = graph[orientation].edgeData(first, center);
|
---|
1622 |
|
---|
1623 | // Look for our anchor in all item center constraints, then remove it
|
---|
1624 | for (int i = 0; i < itemCenterConstraints[orientation].size(); ++i) {
|
---|
1625 | if (itemCenterConstraints[orientation].at(i)->variables.contains(internalAnchor)) {
|
---|
1626 | delete itemCenterConstraints[orientation].takeAt(i);
|
---|
1627 | break;
|
---|
1628 | }
|
---|
1629 | }
|
---|
1630 | }
|
---|
1631 |
|
---|
1632 | /*!
|
---|
1633 | * \internal
|
---|
1634 | * Implements the high level "addAnchor" feature. Called by the public API
|
---|
1635 | * addAnchor method.
|
---|
1636 | *
|
---|
1637 | * The optional \a spacing argument defines the size of the anchor. If not provided,
|
---|
1638 | * the anchor size is either 0 or not-set, depending on type of anchor created (see
|
---|
1639 | * matrix below).
|
---|
1640 | *
|
---|
1641 | * All anchors that remain with size not-set will assume the standard spacing,
|
---|
1642 | * set either by the layout style or through the "setSpacing" layout API.
|
---|
1643 | */
|
---|
1644 | QGraphicsAnchor *QGraphicsAnchorLayoutPrivate::addAnchor(QGraphicsLayoutItem *firstItem,
|
---|
1645 | Qt::AnchorPoint firstEdge,
|
---|
1646 | QGraphicsLayoutItem *secondItem,
|
---|
1647 | Qt::AnchorPoint secondEdge,
|
---|
1648 | qreal *spacing)
|
---|
1649 | {
|
---|
1650 | Q_Q(QGraphicsAnchorLayout);
|
---|
1651 | if ((firstItem == 0) || (secondItem == 0)) {
|
---|
1652 | qWarning("QGraphicsAnchorLayout::addAnchor(): "
|
---|
1653 | "Cannot anchor NULL items");
|
---|
1654 | return 0;
|
---|
1655 | }
|
---|
1656 |
|
---|
1657 | if (firstItem == secondItem) {
|
---|
1658 | qWarning("QGraphicsAnchorLayout::addAnchor(): "
|
---|
1659 | "Cannot anchor the item to itself");
|
---|
1660 | return 0;
|
---|
1661 | }
|
---|
1662 |
|
---|
1663 | if (edgeOrientation(secondEdge) != edgeOrientation(firstEdge)) {
|
---|
1664 | qWarning("QGraphicsAnchorLayout::addAnchor(): "
|
---|
1665 | "Cannot anchor edges of different orientations");
|
---|
1666 | return 0;
|
---|
1667 | }
|
---|
1668 |
|
---|
1669 | const QGraphicsLayoutItem *parentWidget = q->parentLayoutItem();
|
---|
1670 | if (firstItem == parentWidget || secondItem == parentWidget) {
|
---|
1671 | qWarning("QGraphicsAnchorLayout::addAnchor(): "
|
---|
1672 | "You cannot add the parent of the layout to the layout.");
|
---|
1673 | return 0;
|
---|
1674 | }
|
---|
1675 |
|
---|
1676 | // In QGraphicsAnchorLayout, items are represented in its internal
|
---|
1677 | // graph as four anchors that connect:
|
---|
1678 | // - Left -> HCenter
|
---|
1679 | // - HCenter-> Right
|
---|
1680 | // - Top -> VCenter
|
---|
1681 | // - VCenter -> Bottom
|
---|
1682 |
|
---|
1683 | // Ensure that the internal anchors have been created for both items.
|
---|
1684 | if (firstItem != q && !items.contains(firstItem)) {
|
---|
1685 | createItemEdges(firstItem);
|
---|
1686 | addChildLayoutItem(firstItem);
|
---|
1687 | }
|
---|
1688 | if (secondItem != q && !items.contains(secondItem)) {
|
---|
1689 | createItemEdges(secondItem);
|
---|
1690 | addChildLayoutItem(secondItem);
|
---|
1691 | }
|
---|
1692 |
|
---|
1693 | // Create center edges if needed
|
---|
1694 | createCenterAnchors(firstItem, firstEdge);
|
---|
1695 | createCenterAnchors(secondItem, secondEdge);
|
---|
1696 |
|
---|
1697 | // Use heuristics to find out what the user meant with this anchor.
|
---|
1698 | correctEdgeDirection(firstItem, firstEdge, secondItem, secondEdge);
|
---|
1699 |
|
---|
1700 | AnchorData *data = new AnchorData;
|
---|
1701 | QGraphicsAnchor *graphicsAnchor = acquireGraphicsAnchor(data);
|
---|
1702 |
|
---|
1703 | addAnchor_helper(firstItem, firstEdge, secondItem, secondEdge, data);
|
---|
1704 |
|
---|
1705 | if (spacing) {
|
---|
1706 | graphicsAnchor->setSpacing(*spacing);
|
---|
1707 | } else {
|
---|
1708 | // If firstItem or secondItem is the layout itself, the spacing will default to 0.
|
---|
1709 | // Otherwise, the following matrix is used (questionmark means that the spacing
|
---|
1710 | // is queried from the style):
|
---|
1711 | // from
|
---|
1712 | // to Left HCenter Right
|
---|
1713 | // Left 0 0 ?
|
---|
1714 | // HCenter 0 0 0
|
---|
1715 | // Right ? 0 0
|
---|
1716 | if (firstItem == q
|
---|
1717 | || secondItem == q
|
---|
1718 | || pickEdge(firstEdge, Horizontal) == Qt::AnchorHorizontalCenter
|
---|
1719 | || oppositeEdge(firstEdge) != secondEdge) {
|
---|
1720 | graphicsAnchor->setSpacing(0);
|
---|
1721 | } else {
|
---|
1722 | graphicsAnchor->unsetSpacing();
|
---|
1723 | }
|
---|
1724 | }
|
---|
1725 |
|
---|
1726 | return graphicsAnchor;
|
---|
1727 | }
|
---|
1728 |
|
---|
1729 | /*
|
---|
1730 | \internal
|
---|
1731 |
|
---|
1732 | This method adds an AnchorData to the internal graph. It is responsible for doing
|
---|
1733 | the boilerplate part of such task.
|
---|
1734 |
|
---|
1735 | If another AnchorData exists between the mentioned vertices, it is deleted and
|
---|
1736 | the new one is inserted.
|
---|
1737 | */
|
---|
1738 | void QGraphicsAnchorLayoutPrivate::addAnchor_helper(QGraphicsLayoutItem *firstItem,
|
---|
1739 | Qt::AnchorPoint firstEdge,
|
---|
1740 | QGraphicsLayoutItem *secondItem,
|
---|
1741 | Qt::AnchorPoint secondEdge,
|
---|
1742 | AnchorData *data)
|
---|
1743 | {
|
---|
1744 | Q_Q(QGraphicsAnchorLayout);
|
---|
1745 |
|
---|
1746 | const Orientation orientation = edgeOrientation(firstEdge);
|
---|
1747 |
|
---|
1748 | // Create or increase the reference count for the related vertices.
|
---|
1749 | AnchorVertex *v1 = addInternalVertex(firstItem, firstEdge);
|
---|
1750 | AnchorVertex *v2 = addInternalVertex(secondItem, secondEdge);
|
---|
1751 |
|
---|
1752 | // Remove previous anchor
|
---|
1753 | if (graph[orientation].edgeData(v1, v2)) {
|
---|
1754 | removeAnchor_helper(v1, v2);
|
---|
1755 | }
|
---|
1756 |
|
---|
1757 | // If its an internal anchor, set the associated item
|
---|
1758 | if (firstItem == secondItem)
|
---|
1759 | data->item = firstItem;
|
---|
1760 |
|
---|
1761 | data->orientation = orientation;
|
---|
1762 |
|
---|
1763 | // Create a bi-directional edge in the sense it can be transversed both
|
---|
1764 | // from v1 or v2. "data" however is shared between the two references
|
---|
1765 | // so we still know that the anchor direction is from 1 to 2.
|
---|
1766 | data->from = v1;
|
---|
1767 | data->to = v2;
|
---|
1768 | #ifdef QT_DEBUG
|
---|
1769 | data->name = QString::fromAscii("%1 --to--> %2").arg(v1->toString()).arg(v2->toString());
|
---|
1770 | #endif
|
---|
1771 | // ### bit to track internal anchors, since inside AnchorData methods
|
---|
1772 | // we don't have access to the 'q' pointer.
|
---|
1773 | data->isLayoutAnchor = (data->item == q);
|
---|
1774 |
|
---|
1775 | graph[orientation].createEdge(v1, v2, data);
|
---|
1776 | }
|
---|
1777 |
|
---|
1778 | QGraphicsAnchor *QGraphicsAnchorLayoutPrivate::getAnchor(QGraphicsLayoutItem *firstItem,
|
---|
1779 | Qt::AnchorPoint firstEdge,
|
---|
1780 | QGraphicsLayoutItem *secondItem,
|
---|
1781 | Qt::AnchorPoint secondEdge)
|
---|
1782 | {
|
---|
1783 | // Do not expose internal anchors
|
---|
1784 | if (firstItem == secondItem)
|
---|
1785 | return 0;
|
---|
1786 |
|
---|
1787 | const Orientation orientation = edgeOrientation(firstEdge);
|
---|
1788 | AnchorVertex *v1 = internalVertex(firstItem, firstEdge);
|
---|
1789 | AnchorVertex *v2 = internalVertex(secondItem, secondEdge);
|
---|
1790 |
|
---|
1791 | QGraphicsAnchor *graphicsAnchor = 0;
|
---|
1792 |
|
---|
1793 | AnchorData *data = graph[orientation].edgeData(v1, v2);
|
---|
1794 | if (data) {
|
---|
1795 | // We could use "acquireGraphicsAnchor" here, but to avoid a regression where
|
---|
1796 | // an internal anchor was wrongly exposed, I want to ensure no new
|
---|
1797 | // QGraphicsAnchor instances are created by this call.
|
---|
1798 | // This assumption must hold because anchors are either user-created (and already
|
---|
1799 | // have their public object created), or they are internal (and must not reach
|
---|
1800 | // this point).
|
---|
1801 | Q_ASSERT(data->graphicsAnchor);
|
---|
1802 | graphicsAnchor = data->graphicsAnchor;
|
---|
1803 | }
|
---|
1804 | return graphicsAnchor;
|
---|
1805 | }
|
---|
1806 |
|
---|
1807 | /*!
|
---|
1808 | * \internal
|
---|
1809 | *
|
---|
1810 | * Implements the high level "removeAnchor" feature. Called by
|
---|
1811 | * the QAnchorData destructor.
|
---|
1812 | */
|
---|
1813 | void QGraphicsAnchorLayoutPrivate::removeAnchor(AnchorVertex *firstVertex,
|
---|
1814 | AnchorVertex *secondVertex)
|
---|
1815 | {
|
---|
1816 | Q_Q(QGraphicsAnchorLayout);
|
---|
1817 |
|
---|
1818 | // Save references to items while it's safe to assume the vertices exist
|
---|
1819 | QGraphicsLayoutItem *firstItem = firstVertex->m_item;
|
---|
1820 | QGraphicsLayoutItem *secondItem = secondVertex->m_item;
|
---|
1821 |
|
---|
1822 | // Delete the anchor (may trigger deletion of center vertices)
|
---|
1823 | removeAnchor_helper(firstVertex, secondVertex);
|
---|
1824 |
|
---|
1825 | // Ensure no dangling pointer is left behind
|
---|
1826 | firstVertex = secondVertex = 0;
|
---|
1827 |
|
---|
1828 | // Checking if the item stays in the layout or not
|
---|
1829 | bool keepFirstItem = false;
|
---|
1830 | bool keepSecondItem = false;
|
---|
1831 |
|
---|
1832 | QPair<AnchorVertex *, int> v;
|
---|
1833 | int refcount = -1;
|
---|
1834 |
|
---|
1835 | if (firstItem != q) {
|
---|
1836 | for (int i = Qt::AnchorLeft; i <= Qt::AnchorBottom; ++i) {
|
---|
1837 | v = m_vertexList.value(qMakePair(firstItem, static_cast<Qt::AnchorPoint>(i)));
|
---|
1838 | if (v.first) {
|
---|
1839 | if (i == Qt::AnchorHorizontalCenter || i == Qt::AnchorVerticalCenter)
|
---|
1840 | refcount = 2;
|
---|
1841 | else
|
---|
1842 | refcount = 1;
|
---|
1843 |
|
---|
1844 | if (v.second > refcount) {
|
---|
1845 | keepFirstItem = true;
|
---|
1846 | break;
|
---|
1847 | }
|
---|
1848 | }
|
---|
1849 | }
|
---|
1850 | } else
|
---|
1851 | keepFirstItem = true;
|
---|
1852 |
|
---|
1853 | if (secondItem != q) {
|
---|
1854 | for (int i = Qt::AnchorLeft; i <= Qt::AnchorBottom; ++i) {
|
---|
1855 | v = m_vertexList.value(qMakePair(secondItem, static_cast<Qt::AnchorPoint>(i)));
|
---|
1856 | if (v.first) {
|
---|
1857 | if (i == Qt::AnchorHorizontalCenter || i == Qt::AnchorVerticalCenter)
|
---|
1858 | refcount = 2;
|
---|
1859 | else
|
---|
1860 | refcount = 1;
|
---|
1861 |
|
---|
1862 | if (v.second > refcount) {
|
---|
1863 | keepSecondItem = true;
|
---|
1864 | break;
|
---|
1865 | }
|
---|
1866 | }
|
---|
1867 | }
|
---|
1868 | } else
|
---|
1869 | keepSecondItem = true;
|
---|
1870 |
|
---|
1871 | if (!keepFirstItem)
|
---|
1872 | q->removeAt(items.indexOf(firstItem));
|
---|
1873 |
|
---|
1874 | if (!keepSecondItem)
|
---|
1875 | q->removeAt(items.indexOf(secondItem));
|
---|
1876 |
|
---|
1877 | // Removing anchors invalidates the layout
|
---|
1878 | q->invalidate();
|
---|
1879 | }
|
---|
1880 |
|
---|
1881 | /*
|
---|
1882 | \internal
|
---|
1883 |
|
---|
1884 | Implements the low level "removeAnchor" feature. Called by
|
---|
1885 | private methods.
|
---|
1886 | */
|
---|
1887 | void QGraphicsAnchorLayoutPrivate::removeAnchor_helper(AnchorVertex *v1, AnchorVertex *v2)
|
---|
1888 | {
|
---|
1889 | Q_ASSERT(v1 && v2);
|
---|
1890 |
|
---|
1891 | // Remove edge from graph
|
---|
1892 | const Orientation o = edgeOrientation(v1->m_edge);
|
---|
1893 | graph[o].removeEdge(v1, v2);
|
---|
1894 |
|
---|
1895 | // Decrease vertices reference count (may trigger a deletion)
|
---|
1896 | removeInternalVertex(v1->m_item, v1->m_edge);
|
---|
1897 | removeInternalVertex(v2->m_item, v2->m_edge);
|
---|
1898 | }
|
---|
1899 |
|
---|
1900 | AnchorVertex *QGraphicsAnchorLayoutPrivate::addInternalVertex(QGraphicsLayoutItem *item,
|
---|
1901 | Qt::AnchorPoint edge)
|
---|
1902 | {
|
---|
1903 | QPair<QGraphicsLayoutItem *, Qt::AnchorPoint> pair(item, edge);
|
---|
1904 | QPair<AnchorVertex *, int> v = m_vertexList.value(pair);
|
---|
1905 |
|
---|
1906 | if (!v.first) {
|
---|
1907 | Q_ASSERT(v.second == 0);
|
---|
1908 | v.first = new AnchorVertex(item, edge);
|
---|
1909 | }
|
---|
1910 | v.second++;
|
---|
1911 | m_vertexList.insert(pair, v);
|
---|
1912 | return v.first;
|
---|
1913 | }
|
---|
1914 |
|
---|
1915 | /**
|
---|
1916 | * \internal
|
---|
1917 | *
|
---|
1918 | * returns the AnchorVertex that was dereferenced, also when it was removed.
|
---|
1919 | * returns 0 if it did not exist.
|
---|
1920 | */
|
---|
1921 | void QGraphicsAnchorLayoutPrivate::removeInternalVertex(QGraphicsLayoutItem *item,
|
---|
1922 | Qt::AnchorPoint edge)
|
---|
1923 | {
|
---|
1924 | QPair<QGraphicsLayoutItem *, Qt::AnchorPoint> pair(item, edge);
|
---|
1925 | QPair<AnchorVertex *, int> v = m_vertexList.value(pair);
|
---|
1926 |
|
---|
1927 | if (!v.first) {
|
---|
1928 | qWarning("This item with this edge is not in the graph");
|
---|
1929 | return;
|
---|
1930 | }
|
---|
1931 |
|
---|
1932 | v.second--;
|
---|
1933 | if (v.second == 0) {
|
---|
1934 | // Remove reference and delete vertex
|
---|
1935 | m_vertexList.remove(pair);
|
---|
1936 | delete v.first;
|
---|
1937 | } else {
|
---|
1938 | // Update reference count
|
---|
1939 | m_vertexList.insert(pair, v);
|
---|
1940 |
|
---|
1941 | if ((v.second == 2) &&
|
---|
1942 | ((edge == Qt::AnchorHorizontalCenter) ||
|
---|
1943 | (edge == Qt::AnchorVerticalCenter))) {
|
---|
1944 | removeCenterAnchors(item, edge, true);
|
---|
1945 | }
|
---|
1946 | }
|
---|
1947 | }
|
---|
1948 |
|
---|
1949 | void QGraphicsAnchorLayoutPrivate::removeVertex(QGraphicsLayoutItem *item, Qt::AnchorPoint edge)
|
---|
1950 | {
|
---|
1951 | if (AnchorVertex *v = internalVertex(item, edge)) {
|
---|
1952 | Graph<AnchorVertex, AnchorData> &g = graph[edgeOrientation(edge)];
|
---|
1953 | const QList<AnchorVertex *> allVertices = graph[edgeOrientation(edge)].adjacentVertices(v);
|
---|
1954 | AnchorVertex *v2;
|
---|
1955 | foreach (v2, allVertices) {
|
---|
1956 | g.removeEdge(v, v2);
|
---|
1957 | removeInternalVertex(item, edge);
|
---|
1958 | removeInternalVertex(v2->m_item, v2->m_edge);
|
---|
1959 | }
|
---|
1960 | }
|
---|
1961 | }
|
---|
1962 |
|
---|
1963 | void QGraphicsAnchorLayoutPrivate::removeAnchors(QGraphicsLayoutItem *item)
|
---|
1964 | {
|
---|
1965 | // remove the center anchor first!!
|
---|
1966 | removeCenterAnchors(item, Qt::AnchorHorizontalCenter, false);
|
---|
1967 | removeVertex(item, Qt::AnchorLeft);
|
---|
1968 | removeVertex(item, Qt::AnchorRight);
|
---|
1969 |
|
---|
1970 | removeCenterAnchors(item, Qt::AnchorVerticalCenter, false);
|
---|
1971 | removeVertex(item, Qt::AnchorTop);
|
---|
1972 | removeVertex(item, Qt::AnchorBottom);
|
---|
1973 | }
|
---|
1974 |
|
---|
1975 | /*!
|
---|
1976 | \internal
|
---|
1977 |
|
---|
1978 | Use heuristics to determine the correct orientation of a given anchor.
|
---|
1979 |
|
---|
1980 | After API discussions, we decided we would like expressions like
|
---|
1981 | anchor(A, Left, B, Right) to mean the same as anchor(B, Right, A, Left).
|
---|
1982 | The problem with this is that anchors could become ambiguous, for
|
---|
1983 | instance, what does the anchor A, B of size X mean?
|
---|
1984 |
|
---|
1985 | "pos(B) = pos(A) + X" or "pos(A) = pos(B) + X" ?
|
---|
1986 |
|
---|
1987 | To keep the API user friendly and at the same time, keep our algorithm
|
---|
1988 | deterministic, we use an heuristic to determine a direction for each
|
---|
1989 | added anchor and then keep it. The heuristic is based on the fact
|
---|
1990 | that people usually avoid overlapping items, therefore:
|
---|
1991 |
|
---|
1992 | "A, RIGHT to B, LEFT" means that B is to the LEFT of A.
|
---|
1993 | "B, LEFT to A, RIGHT" is corrected to the above anchor.
|
---|
1994 |
|
---|
1995 | Special correction is also applied when one of the items is the
|
---|
1996 | layout. We handle Layout Left as if it was another items's Right
|
---|
1997 | and Layout Right as another item's Left.
|
---|
1998 | */
|
---|
1999 | void QGraphicsAnchorLayoutPrivate::correctEdgeDirection(QGraphicsLayoutItem *&firstItem,
|
---|
2000 | Qt::AnchorPoint &firstEdge,
|
---|
2001 | QGraphicsLayoutItem *&secondItem,
|
---|
2002 | Qt::AnchorPoint &secondEdge)
|
---|
2003 | {
|
---|
2004 | Q_Q(QGraphicsAnchorLayout);
|
---|
2005 |
|
---|
2006 | if ((firstItem != q) && (secondItem != q)) {
|
---|
2007 | // If connection is between widgets (not the layout itself)
|
---|
2008 | // Ensure that "right-edges" sit to the left of "left-edges".
|
---|
2009 | if (firstEdge < secondEdge) {
|
---|
2010 | qSwap(firstItem, secondItem);
|
---|
2011 | qSwap(firstEdge, secondEdge);
|
---|
2012 | }
|
---|
2013 | } else if (firstItem == q) {
|
---|
2014 | // If connection involves the right or bottom of a layout, ensure
|
---|
2015 | // the layout is the second item.
|
---|
2016 | if ((firstEdge == Qt::AnchorRight) || (firstEdge == Qt::AnchorBottom)) {
|
---|
2017 | qSwap(firstItem, secondItem);
|
---|
2018 | qSwap(firstEdge, secondEdge);
|
---|
2019 | }
|
---|
2020 | } else if ((secondEdge != Qt::AnchorRight) && (secondEdge != Qt::AnchorBottom)) {
|
---|
2021 | // If connection involves the left, center or top of layout, ensure
|
---|
2022 | // the layout is the first item.
|
---|
2023 | qSwap(firstItem, secondItem);
|
---|
2024 | qSwap(firstEdge, secondEdge);
|
---|
2025 | }
|
---|
2026 | }
|
---|
2027 |
|
---|
2028 | QLayoutStyleInfo &QGraphicsAnchorLayoutPrivate::styleInfo() const
|
---|
2029 | {
|
---|
2030 | if (styleInfoDirty) {
|
---|
2031 | Q_Q(const QGraphicsAnchorLayout);
|
---|
2032 | //### Fix this if QGV ever gets support for Metal style or different Aqua sizes.
|
---|
2033 | QWidget *wid = 0;
|
---|
2034 |
|
---|
2035 | QGraphicsLayoutItem *parent = q->parentLayoutItem();
|
---|
2036 | while (parent && parent->isLayout()) {
|
---|
2037 | parent = parent->parentLayoutItem();
|
---|
2038 | }
|
---|
2039 | QGraphicsWidget *w = 0;
|
---|
2040 | if (parent) {
|
---|
2041 | QGraphicsItem *parentItem = parent->graphicsItem();
|
---|
2042 | if (parentItem && parentItem->isWidget())
|
---|
2043 | w = static_cast<QGraphicsWidget*>(parentItem);
|
---|
2044 | }
|
---|
2045 |
|
---|
2046 | QStyle *style = w ? w->style() : QApplication::style();
|
---|
2047 | cachedStyleInfo = QLayoutStyleInfo(style, wid);
|
---|
2048 | cachedStyleInfo.setDefaultSpacing(Qt::Horizontal, spacings[0]);
|
---|
2049 | cachedStyleInfo.setDefaultSpacing(Qt::Vertical, spacings[1]);
|
---|
2050 |
|
---|
2051 | styleInfoDirty = false;
|
---|
2052 | }
|
---|
2053 | return cachedStyleInfo;
|
---|
2054 | }
|
---|
2055 |
|
---|
2056 | /*!
|
---|
2057 | \internal
|
---|
2058 |
|
---|
2059 | Called on activation. Uses Linear Programming to define minimum, preferred
|
---|
2060 | and maximum sizes for the layout. Also calculates the sizes that each item
|
---|
2061 | should assume when the layout is in one of such situations.
|
---|
2062 | */
|
---|
2063 | void QGraphicsAnchorLayoutPrivate::calculateGraphs()
|
---|
2064 | {
|
---|
2065 | if (!calculateGraphCacheDirty)
|
---|
2066 | return;
|
---|
2067 | calculateGraphs(Horizontal);
|
---|
2068 | calculateGraphs(Vertical);
|
---|
2069 | calculateGraphCacheDirty = false;
|
---|
2070 | }
|
---|
2071 |
|
---|
2072 | // ### Maybe getGraphParts could return the variables when traversing, at least
|
---|
2073 | // for trunk...
|
---|
2074 | QList<AnchorData *> getVariables(QList<QSimplexConstraint *> constraints)
|
---|
2075 | {
|
---|
2076 | QSet<AnchorData *> variableSet;
|
---|
2077 | for (int i = 0; i < constraints.count(); ++i) {
|
---|
2078 | const QSimplexConstraint *c = constraints.at(i);
|
---|
2079 | foreach (QSimplexVariable *var, c->variables.keys()) {
|
---|
2080 | variableSet += static_cast<AnchorData *>(var);
|
---|
2081 | }
|
---|
2082 | }
|
---|
2083 | return variableSet.toList();
|
---|
2084 | }
|
---|
2085 |
|
---|
2086 | /*!
|
---|
2087 | \internal
|
---|
2088 |
|
---|
2089 | Calculate graphs is the method that puts together all the helper routines
|
---|
2090 | so that the AnchorLayout can calculate the sizes of each item.
|
---|
2091 |
|
---|
2092 | In a nutshell it should do:
|
---|
2093 |
|
---|
2094 | 1) Refresh anchor nominal sizes, that is, the size that each anchor would
|
---|
2095 | have if no other restrictions applied. This is done by quering the
|
---|
2096 | layout style and the sizeHints of the items belonging to the layout.
|
---|
2097 |
|
---|
2098 | 2) Simplify the graph by grouping together parallel and sequential anchors
|
---|
2099 | into "group anchors". These have equivalent minimum, preferred and maximum
|
---|
2100 | sizeHints as the anchors they replace.
|
---|
2101 |
|
---|
2102 | 3) Check if we got to a trivial case. In some cases, the whole graph can be
|
---|
2103 | simplified into a single anchor. If so, use this information. If not,
|
---|
2104 | then call the Simplex solver to calculate the anchors sizes.
|
---|
2105 |
|
---|
2106 | 4) Once the root anchors had its sizes calculated, propagate that to the
|
---|
2107 | anchors they represent.
|
---|
2108 | */
|
---|
2109 | void QGraphicsAnchorLayoutPrivate::calculateGraphs(
|
---|
2110 | QGraphicsAnchorLayoutPrivate::Orientation orientation)
|
---|
2111 | {
|
---|
2112 | #if defined(QT_DEBUG) || defined(Q_AUTOTEST_EXPORT)
|
---|
2113 | lastCalculationUsedSimplex[orientation] = false;
|
---|
2114 | #endif
|
---|
2115 |
|
---|
2116 | static bool simplificationEnabled = qgetenv("QT_ANCHORLAYOUT_NO_SIMPLIFICATION").isEmpty();
|
---|
2117 |
|
---|
2118 | // Reset the nominal sizes of each anchor based on the current item sizes
|
---|
2119 | refreshAllSizeHints(orientation);
|
---|
2120 |
|
---|
2121 | // Simplify the graph
|
---|
2122 | if (simplificationEnabled && !simplifyGraph(orientation)) {
|
---|
2123 | qWarning("QGraphicsAnchorLayout: anchor setup is not feasible.");
|
---|
2124 | graphHasConflicts[orientation] = true;
|
---|
2125 | return;
|
---|
2126 | }
|
---|
2127 |
|
---|
2128 | // Traverse all graph edges and store the possible paths to each vertex
|
---|
2129 | findPaths(orientation);
|
---|
2130 |
|
---|
2131 | // From the paths calculated above, extract the constraints that the current
|
---|
2132 | // anchor setup impose, to our Linear Programming problem.
|
---|
2133 | constraintsFromPaths(orientation);
|
---|
2134 |
|
---|
2135 | // Split the constraints and anchors into groups that should be fed to the
|
---|
2136 | // simplex solver independently. Currently we find two groups:
|
---|
2137 | //
|
---|
2138 | // 1) The "trunk", that is, the set of anchors (items) that are connected
|
---|
2139 | // to the two opposite sides of our layout, and thus need to stretch in
|
---|
2140 | // order to fit in the current layout size.
|
---|
2141 | //
|
---|
2142 | // 2) The floating or semi-floating anchors (items) that are those which
|
---|
2143 | // are connected to only one (or none) of the layout sides, thus are not
|
---|
2144 | // influenced by the layout size.
|
---|
2145 | QList<QList<QSimplexConstraint *> > parts = getGraphParts(orientation);
|
---|
2146 |
|
---|
2147 | // Now run the simplex solver to calculate Minimum, Preferred and Maximum sizes
|
---|
2148 | // of the "trunk" set of constraints and variables.
|
---|
2149 | // ### does trunk always exist? empty = trunk is the layout left->center->right
|
---|
2150 | QList<QSimplexConstraint *> trunkConstraints = parts.at(0);
|
---|
2151 | QList<AnchorData *> trunkVariables = getVariables(trunkConstraints);
|
---|
2152 |
|
---|
2153 | // For minimum and maximum, use the path between the two layout sides as the
|
---|
2154 | // objective function.
|
---|
2155 | AnchorVertex *v = layoutLastVertex[orientation];
|
---|
2156 | GraphPath trunkPath = graphPaths[orientation].value(v);
|
---|
2157 |
|
---|
2158 | bool feasible = calculateTrunk(orientation, trunkPath, trunkConstraints, trunkVariables);
|
---|
2159 |
|
---|
2160 | // For the other parts that not the trunk, solve only for the preferred size
|
---|
2161 | // that is the size they will remain at, since they are not stretched by the
|
---|
2162 | // layout.
|
---|
2163 |
|
---|
2164 | // Skipping the first (trunk)
|
---|
2165 | for (int i = 1; i < parts.count(); ++i) {
|
---|
2166 | if (!feasible)
|
---|
2167 | break;
|
---|
2168 |
|
---|
2169 | QList<QSimplexConstraint *> partConstraints = parts.at(i);
|
---|
2170 | QList<AnchorData *> partVariables = getVariables(partConstraints);
|
---|
2171 | Q_ASSERT(!partVariables.isEmpty());
|
---|
2172 | feasible &= calculateNonTrunk(partConstraints, partVariables);
|
---|
2173 | }
|
---|
2174 |
|
---|
2175 | // Propagate the new sizes down the simplified graph, ie. tell the
|
---|
2176 | // group anchors to set their children anchors sizes.
|
---|
2177 | updateAnchorSizes(orientation);
|
---|
2178 |
|
---|
2179 | graphHasConflicts[orientation] = !feasible;
|
---|
2180 |
|
---|
2181 | // Clean up our data structures. They are not needed anymore since
|
---|
2182 | // distribution uses just interpolation.
|
---|
2183 | qDeleteAll(constraints[orientation]);
|
---|
2184 | constraints[orientation].clear();
|
---|
2185 | graphPaths[orientation].clear(); // ###
|
---|
2186 |
|
---|
2187 | if (simplificationEnabled)
|
---|
2188 | restoreSimplifiedGraph(orientation);
|
---|
2189 | }
|
---|
2190 |
|
---|
2191 | /*!
|
---|
2192 | \internal
|
---|
2193 |
|
---|
2194 | Shift all the constraints by a certain amount. This allows us to deal with negative values in
|
---|
2195 | the linear program if they are bounded by a certain limit. Functions should be careful to
|
---|
2196 | call it again with a negative amount, to shift the constraints back.
|
---|
2197 | */
|
---|
2198 | static void shiftConstraints(const QList<QSimplexConstraint *> &constraints, qreal amount)
|
---|
2199 | {
|
---|
2200 | for (int i = 0; i < constraints.count(); ++i) {
|
---|
2201 | QSimplexConstraint *c = constraints.at(i);
|
---|
2202 | qreal multiplier = 0;
|
---|
2203 | foreach (qreal v, c->variables.values()) {
|
---|
2204 | multiplier += v;
|
---|
2205 | }
|
---|
2206 | c->constant += multiplier * amount;
|
---|
2207 | }
|
---|
2208 | }
|
---|
2209 |
|
---|
2210 | /*!
|
---|
2211 | \internal
|
---|
2212 |
|
---|
2213 | Calculate the sizes for all anchors which are part of the trunk. This works
|
---|
2214 | on top of a (possibly) simplified graph.
|
---|
2215 | */
|
---|
2216 | bool QGraphicsAnchorLayoutPrivate::calculateTrunk(Orientation orientation, const GraphPath &path,
|
---|
2217 | const QList<QSimplexConstraint *> &constraints,
|
---|
2218 | const QList<AnchorData *> &variables)
|
---|
2219 | {
|
---|
2220 | bool feasible = true;
|
---|
2221 | bool needsSimplex = !constraints.isEmpty();
|
---|
2222 |
|
---|
2223 | #if 0
|
---|
2224 | qDebug("Simplex %s for trunk of %s", needsSimplex ? "used" : "NOT used",
|
---|
2225 | orientation == Horizontal ? "Horizontal" : "Vertical");
|
---|
2226 | #endif
|
---|
2227 |
|
---|
2228 | if (needsSimplex) {
|
---|
2229 |
|
---|
2230 | QList<QSimplexConstraint *> sizeHintConstraints = constraintsFromSizeHints(variables);
|
---|
2231 | QList<QSimplexConstraint *> allConstraints = constraints + sizeHintConstraints;
|
---|
2232 |
|
---|
2233 | shiftConstraints(allConstraints, g_offset);
|
---|
2234 |
|
---|
2235 | // Solve min and max size hints
|
---|
2236 | qreal min, max;
|
---|
2237 | feasible = solveMinMax(allConstraints, path, &min, &max);
|
---|
2238 |
|
---|
2239 | if (feasible) {
|
---|
2240 | solvePreferred(constraints, variables);
|
---|
2241 |
|
---|
2242 | // Calculate and set the preferred size for the layout,
|
---|
2243 | // from the edge sizes that were calculated above.
|
---|
2244 | qreal pref(0.0);
|
---|
2245 | foreach (const AnchorData *ad, path.positives) {
|
---|
2246 | pref += ad->sizeAtPreferred;
|
---|
2247 | }
|
---|
2248 | foreach (const AnchorData *ad, path.negatives) {
|
---|
2249 | pref -= ad->sizeAtPreferred;
|
---|
2250 | }
|
---|
2251 |
|
---|
2252 | sizeHints[orientation][Qt::MinimumSize] = min;
|
---|
2253 | sizeHints[orientation][Qt::PreferredSize] = pref;
|
---|
2254 | sizeHints[orientation][Qt::MaximumSize] = max;
|
---|
2255 | }
|
---|
2256 |
|
---|
2257 | qDeleteAll(sizeHintConstraints);
|
---|
2258 | shiftConstraints(constraints, -g_offset);
|
---|
2259 |
|
---|
2260 | } else {
|
---|
2261 | // No Simplex is necessary because the path was simplified all the way to a single
|
---|
2262 | // anchor.
|
---|
2263 | Q_ASSERT(path.positives.count() == 1);
|
---|
2264 | Q_ASSERT(path.negatives.count() == 0);
|
---|
2265 |
|
---|
2266 | AnchorData *ad = path.positives.toList()[0];
|
---|
2267 | ad->sizeAtMinimum = ad->minSize;
|
---|
2268 | ad->sizeAtPreferred = ad->prefSize;
|
---|
2269 | ad->sizeAtMaximum = ad->maxSize;
|
---|
2270 |
|
---|
2271 | sizeHints[orientation][Qt::MinimumSize] = ad->sizeAtMinimum;
|
---|
2272 | sizeHints[orientation][Qt::PreferredSize] = ad->sizeAtPreferred;
|
---|
2273 | sizeHints[orientation][Qt::MaximumSize] = ad->sizeAtMaximum;
|
---|
2274 | }
|
---|
2275 |
|
---|
2276 | #if defined(QT_DEBUG) || defined(Q_AUTOTEST_EXPORT)
|
---|
2277 | lastCalculationUsedSimplex[orientation] = needsSimplex;
|
---|
2278 | #endif
|
---|
2279 |
|
---|
2280 | return feasible;
|
---|
2281 | }
|
---|
2282 |
|
---|
2283 | /*!
|
---|
2284 | \internal
|
---|
2285 | */
|
---|
2286 | bool QGraphicsAnchorLayoutPrivate::calculateNonTrunk(const QList<QSimplexConstraint *> &constraints,
|
---|
2287 | const QList<AnchorData *> &variables)
|
---|
2288 | {
|
---|
2289 | shiftConstraints(constraints, g_offset);
|
---|
2290 | bool feasible = solvePreferred(constraints, variables);
|
---|
2291 |
|
---|
2292 | if (feasible) {
|
---|
2293 | // Propagate size at preferred to other sizes. Semi-floats always will be
|
---|
2294 | // in their sizeAtPreferred.
|
---|
2295 | for (int j = 0; j < variables.count(); ++j) {
|
---|
2296 | AnchorData *ad = variables.at(j);
|
---|
2297 | Q_ASSERT(ad);
|
---|
2298 | ad->sizeAtMinimum = ad->sizeAtPreferred;
|
---|
2299 | ad->sizeAtMaximum = ad->sizeAtPreferred;
|
---|
2300 | }
|
---|
2301 | }
|
---|
2302 |
|
---|
2303 | shiftConstraints(constraints, -g_offset);
|
---|
2304 | return feasible;
|
---|
2305 | }
|
---|
2306 |
|
---|
2307 | /*!
|
---|
2308 | \internal
|
---|
2309 |
|
---|
2310 | Traverse the graph refreshing the size hints. Edges will query their associated
|
---|
2311 | item or graphicsAnchor for their size hints.
|
---|
2312 | */
|
---|
2313 | void QGraphicsAnchorLayoutPrivate::refreshAllSizeHints(Orientation orientation)
|
---|
2314 | {
|
---|
2315 | Graph<AnchorVertex, AnchorData> &g = graph[orientation];
|
---|
2316 | QList<QPair<AnchorVertex *, AnchorVertex *> > vertices = g.connections();
|
---|
2317 |
|
---|
2318 | QLayoutStyleInfo styleInf = styleInfo();
|
---|
2319 | for (int i = 0; i < vertices.count(); ++i) {
|
---|
2320 | AnchorData *data = g.edgeData(vertices.at(i).first, vertices.at(i).second);
|
---|
2321 | data->refreshSizeHints(&styleInf);
|
---|
2322 | }
|
---|
2323 | }
|
---|
2324 |
|
---|
2325 | /*!
|
---|
2326 | \internal
|
---|
2327 |
|
---|
2328 | This method walks the graph using a breadth-first search to find paths
|
---|
2329 | between the root vertex and each vertex on the graph. The edges
|
---|
2330 | directions in each path are considered and they are stored as a
|
---|
2331 | positive edge (left-to-right) or negative edge (right-to-left).
|
---|
2332 |
|
---|
2333 | The list of paths is used later to generate a list of constraints.
|
---|
2334 | */
|
---|
2335 | void QGraphicsAnchorLayoutPrivate::findPaths(Orientation orientation)
|
---|
2336 | {
|
---|
2337 | QQueue<QPair<AnchorVertex *, AnchorVertex *> > queue;
|
---|
2338 |
|
---|
2339 | QSet<AnchorData *> visited;
|
---|
2340 |
|
---|
2341 | AnchorVertex *root = layoutFirstVertex[orientation];
|
---|
2342 |
|
---|
2343 | graphPaths[orientation].insert(root, GraphPath());
|
---|
2344 |
|
---|
2345 | foreach (AnchorVertex *v, graph[orientation].adjacentVertices(root)) {
|
---|
2346 | queue.enqueue(qMakePair(root, v));
|
---|
2347 | }
|
---|
2348 |
|
---|
2349 | while(!queue.isEmpty()) {
|
---|
2350 | QPair<AnchorVertex *, AnchorVertex *> pair = queue.dequeue();
|
---|
2351 | AnchorData *edge = graph[orientation].edgeData(pair.first, pair.second);
|
---|
2352 |
|
---|
2353 | if (visited.contains(edge))
|
---|
2354 | continue;
|
---|
2355 |
|
---|
2356 | visited.insert(edge);
|
---|
2357 | GraphPath current = graphPaths[orientation].value(pair.first);
|
---|
2358 |
|
---|
2359 | if (edge->from == pair.first)
|
---|
2360 | current.positives.insert(edge);
|
---|
2361 | else
|
---|
2362 | current.negatives.insert(edge);
|
---|
2363 |
|
---|
2364 | graphPaths[orientation].insert(pair.second, current);
|
---|
2365 |
|
---|
2366 | foreach (AnchorVertex *v,
|
---|
2367 | graph[orientation].adjacentVertices(pair.second)) {
|
---|
2368 | queue.enqueue(qMakePair(pair.second, v));
|
---|
2369 | }
|
---|
2370 | }
|
---|
2371 |
|
---|
2372 | // We will walk through every reachable items (non-float) store them in a temporary set.
|
---|
2373 | // We them create a set of all items and subtract the non-floating items from the set in
|
---|
2374 | // order to get the floating items. The floating items is then stored in m_floatItems
|
---|
2375 | identifyFloatItems(visited, orientation);
|
---|
2376 | }
|
---|
2377 |
|
---|
2378 | /*!
|
---|
2379 | \internal
|
---|
2380 |
|
---|
2381 | Each vertex on the graph that has more than one path to it
|
---|
2382 | represents a contra int to the sizes of the items in these paths.
|
---|
2383 |
|
---|
2384 | This method walks the list of paths to each vertex, generate
|
---|
2385 | the constraints and store them in a list so they can be used later
|
---|
2386 | by the Simplex solver.
|
---|
2387 | */
|
---|
2388 | void QGraphicsAnchorLayoutPrivate::constraintsFromPaths(Orientation orientation)
|
---|
2389 | {
|
---|
2390 | foreach (AnchorVertex *vertex, graphPaths[orientation].uniqueKeys())
|
---|
2391 | {
|
---|
2392 | int valueCount = graphPaths[orientation].count(vertex);
|
---|
2393 | if (valueCount == 1)
|
---|
2394 | continue;
|
---|
2395 |
|
---|
2396 | QList<GraphPath> pathsToVertex = graphPaths[orientation].values(vertex);
|
---|
2397 | for (int i = 1; i < valueCount; ++i) {
|
---|
2398 | constraints[orientation] += \
|
---|
2399 | pathsToVertex[0].constraint(pathsToVertex.at(i));
|
---|
2400 | }
|
---|
2401 | }
|
---|
2402 | }
|
---|
2403 |
|
---|
2404 | /*!
|
---|
2405 | \internal
|
---|
2406 | */
|
---|
2407 | void QGraphicsAnchorLayoutPrivate::updateAnchorSizes(Orientation orientation)
|
---|
2408 | {
|
---|
2409 | Graph<AnchorVertex, AnchorData> &g = graph[orientation];
|
---|
2410 | const QList<QPair<AnchorVertex *, AnchorVertex *> > &vertices = g.connections();
|
---|
2411 |
|
---|
2412 | for (int i = 0; i < vertices.count(); ++i) {
|
---|
2413 | AnchorData *ad = g.edgeData(vertices.at(i).first, vertices.at(i).second);
|
---|
2414 | ad->updateChildrenSizes();
|
---|
2415 | }
|
---|
2416 | }
|
---|
2417 |
|
---|
2418 | /*!
|
---|
2419 | \internal
|
---|
2420 |
|
---|
2421 | Create LP constraints for each anchor based on its minimum and maximum
|
---|
2422 | sizes, as specified in its size hints
|
---|
2423 | */
|
---|
2424 | QList<QSimplexConstraint *> QGraphicsAnchorLayoutPrivate::constraintsFromSizeHints(
|
---|
2425 | const QList<AnchorData *> &anchors)
|
---|
2426 | {
|
---|
2427 | if (anchors.isEmpty())
|
---|
2428 | return QList<QSimplexConstraint *>();
|
---|
2429 |
|
---|
2430 | // Look for the layout edge. That can be either the first half in case the
|
---|
2431 | // layout is split in two, or the whole layout anchor.
|
---|
2432 | Orientation orient = Orientation(anchors.first()->orientation);
|
---|
2433 | AnchorData *layoutEdge = 0;
|
---|
2434 | if (layoutCentralVertex[orient]) {
|
---|
2435 | layoutEdge = graph[orient].edgeData(layoutFirstVertex[orient], layoutCentralVertex[orient]);
|
---|
2436 | } else {
|
---|
2437 | layoutEdge = graph[orient].edgeData(layoutFirstVertex[orient], layoutLastVertex[orient]);
|
---|
2438 | }
|
---|
2439 |
|
---|
2440 | // If maxSize is less then "infinite", that means there are other anchors
|
---|
2441 | // grouped together with this one. We can't ignore its maximum value so we
|
---|
2442 | // set back the variable to NULL to prevent the continue condition from being
|
---|
2443 | // satisfied in the loop below.
|
---|
2444 | const qreal expectedMax = layoutCentralVertex[orient] ? QWIDGETSIZE_MAX / 2 : QWIDGETSIZE_MAX;
|
---|
2445 | qreal actualMax;
|
---|
2446 | if (layoutEdge->from == layoutFirstVertex[orient]) {
|
---|
2447 | actualMax = layoutEdge->maxSize;
|
---|
2448 | } else {
|
---|
2449 | actualMax = -layoutEdge->minSize;
|
---|
2450 | }
|
---|
2451 | if (actualMax != expectedMax) {
|
---|
2452 | layoutEdge = 0;
|
---|
2453 | }
|
---|
2454 |
|
---|
2455 | // For each variable, create constraints based on size hints
|
---|
2456 | QList<QSimplexConstraint *> anchorConstraints;
|
---|
2457 | bool unboundedProblem = true;
|
---|
2458 | for (int i = 0; i < anchors.size(); ++i) {
|
---|
2459 | AnchorData *ad = anchors.at(i);
|
---|
2460 |
|
---|
2461 | // Anchors that have their size directly linked to another one don't need constraints
|
---|
2462 | // For exammple, the second half of an item has exactly the same size as the first half
|
---|
2463 | // thus constraining the latter is enough.
|
---|
2464 | if (ad->dependency == AnchorData::Slave)
|
---|
2465 | continue;
|
---|
2466 |
|
---|
2467 | // To use negative variables inside simplex, we shift them so the minimum negative value is
|
---|
2468 | // mapped to zero before solving. To make sure that it works, we need to guarantee that the
|
---|
2469 | // variables are all inside a certain boundary.
|
---|
2470 | qreal boundedMin = qBound(-g_offset, ad->minSize, g_offset);
|
---|
2471 | qreal boundedMax = qBound(-g_offset, ad->maxSize, g_offset);
|
---|
2472 |
|
---|
2473 | if ((boundedMin == boundedMax) || qFuzzyCompare(boundedMin, boundedMax)) {
|
---|
2474 | QSimplexConstraint *c = new QSimplexConstraint;
|
---|
2475 | c->variables.insert(ad, 1.0);
|
---|
2476 | c->constant = boundedMin;
|
---|
2477 | c->ratio = QSimplexConstraint::Equal;
|
---|
2478 | anchorConstraints += c;
|
---|
2479 | unboundedProblem = false;
|
---|
2480 | } else {
|
---|
2481 | QSimplexConstraint *c = new QSimplexConstraint;
|
---|
2482 | c->variables.insert(ad, 1.0);
|
---|
2483 | c->constant = boundedMin;
|
---|
2484 | c->ratio = QSimplexConstraint::MoreOrEqual;
|
---|
2485 | anchorConstraints += c;
|
---|
2486 |
|
---|
2487 | // We avoid adding restrictions to the layout internal anchors. That's
|
---|
2488 | // to prevent unnecessary fair distribution from happening due to this
|
---|
2489 | // artificial restriction.
|
---|
2490 | if (ad == layoutEdge)
|
---|
2491 | continue;
|
---|
2492 |
|
---|
2493 | c = new QSimplexConstraint;
|
---|
2494 | c->variables.insert(ad, 1.0);
|
---|
2495 | c->constant = boundedMax;
|
---|
2496 | c->ratio = QSimplexConstraint::LessOrEqual;
|
---|
2497 | anchorConstraints += c;
|
---|
2498 | unboundedProblem = false;
|
---|
2499 | }
|
---|
2500 | }
|
---|
2501 |
|
---|
2502 | // If no upper boundary restriction was added, add one to avoid unbounded problem
|
---|
2503 | if (unboundedProblem) {
|
---|
2504 | QSimplexConstraint *c = new QSimplexConstraint;
|
---|
2505 | c->variables.insert(layoutEdge, 1.0);
|
---|
2506 | // The maximum size that the layout can take
|
---|
2507 | c->constant = g_offset;
|
---|
2508 | c->ratio = QSimplexConstraint::LessOrEqual;
|
---|
2509 | anchorConstraints += c;
|
---|
2510 | }
|
---|
2511 |
|
---|
2512 | return anchorConstraints;
|
---|
2513 | }
|
---|
2514 |
|
---|
2515 | /*!
|
---|
2516 | \internal
|
---|
2517 | */
|
---|
2518 | QList< QList<QSimplexConstraint *> >
|
---|
2519 | QGraphicsAnchorLayoutPrivate::getGraphParts(Orientation orientation)
|
---|
2520 | {
|
---|
2521 | Q_ASSERT(layoutFirstVertex[orientation] && layoutLastVertex[orientation]);
|
---|
2522 |
|
---|
2523 | AnchorData *edgeL1 = 0;
|
---|
2524 | AnchorData *edgeL2 = 0;
|
---|
2525 |
|
---|
2526 | // The layout may have a single anchor between Left and Right or two half anchors
|
---|
2527 | // passing through the center
|
---|
2528 | if (layoutCentralVertex[orientation]) {
|
---|
2529 | edgeL1 = graph[orientation].edgeData(layoutFirstVertex[orientation], layoutCentralVertex[orientation]);
|
---|
2530 | edgeL2 = graph[orientation].edgeData(layoutCentralVertex[orientation], layoutLastVertex[orientation]);
|
---|
2531 | } else {
|
---|
2532 | edgeL1 = graph[orientation].edgeData(layoutFirstVertex[orientation], layoutLastVertex[orientation]);
|
---|
2533 | }
|
---|
2534 |
|
---|
2535 | QLinkedList<QSimplexConstraint *> remainingConstraints;
|
---|
2536 | for (int i = 0; i < constraints[orientation].count(); ++i) {
|
---|
2537 | remainingConstraints += constraints[orientation].at(i);
|
---|
2538 | }
|
---|
2539 | for (int i = 0; i < itemCenterConstraints[orientation].count(); ++i) {
|
---|
2540 | remainingConstraints += itemCenterConstraints[orientation].at(i);
|
---|
2541 | }
|
---|
2542 |
|
---|
2543 | QList<QSimplexConstraint *> trunkConstraints;
|
---|
2544 | QSet<QSimplexVariable *> trunkVariables;
|
---|
2545 |
|
---|
2546 | trunkVariables += edgeL1;
|
---|
2547 | if (edgeL2)
|
---|
2548 | trunkVariables += edgeL2;
|
---|
2549 |
|
---|
2550 | bool dirty;
|
---|
2551 | do {
|
---|
2552 | dirty = false;
|
---|
2553 |
|
---|
2554 | QLinkedList<QSimplexConstraint *>::iterator it = remainingConstraints.begin();
|
---|
2555 | while (it != remainingConstraints.end()) {
|
---|
2556 | QSimplexConstraint *c = *it;
|
---|
2557 | bool match = false;
|
---|
2558 |
|
---|
2559 | // Check if this constraint have some overlap with current
|
---|
2560 | // trunk variables...
|
---|
2561 | foreach (QSimplexVariable *ad, trunkVariables) {
|
---|
2562 | if (c->variables.contains(ad)) {
|
---|
2563 | match = true;
|
---|
2564 | break;
|
---|
2565 | }
|
---|
2566 | }
|
---|
2567 |
|
---|
2568 | // If so, we add it to trunk, and erase it from the
|
---|
2569 | // remaining constraints.
|
---|
2570 | if (match) {
|
---|
2571 | trunkConstraints += c;
|
---|
2572 | trunkVariables += QSet<QSimplexVariable *>::fromList(c->variables.keys());
|
---|
2573 | it = remainingConstraints.erase(it);
|
---|
2574 | dirty = true;
|
---|
2575 | } else {
|
---|
2576 | // Note that we don't erase the constraint if it's not
|
---|
2577 | // a match, since in a next iteration of a do-while we
|
---|
2578 | // can pass on it again and it will be a match.
|
---|
2579 | //
|
---|
2580 | // For example: if trunk share a variable with
|
---|
2581 | // remainingConstraints[1] and it shares with
|
---|
2582 | // remainingConstraints[0], we need a second iteration
|
---|
2583 | // of the do-while loop to match both.
|
---|
2584 | ++it;
|
---|
2585 | }
|
---|
2586 | }
|
---|
2587 | } while (dirty);
|
---|
2588 |
|
---|
2589 | QList< QList<QSimplexConstraint *> > result;
|
---|
2590 | result += trunkConstraints;
|
---|
2591 |
|
---|
2592 | if (!remainingConstraints.isEmpty()) {
|
---|
2593 | QList<QSimplexConstraint *> nonTrunkConstraints;
|
---|
2594 | QLinkedList<QSimplexConstraint *>::iterator it = remainingConstraints.begin();
|
---|
2595 | while (it != remainingConstraints.end()) {
|
---|
2596 | nonTrunkConstraints += *it;
|
---|
2597 | ++it;
|
---|
2598 | }
|
---|
2599 | result += nonTrunkConstraints;
|
---|
2600 | }
|
---|
2601 |
|
---|
2602 | return result;
|
---|
2603 | }
|
---|
2604 |
|
---|
2605 | /*!
|
---|
2606 | \internal
|
---|
2607 |
|
---|
2608 | Use all visited Anchors on findPaths() so we can identify non-float Items.
|
---|
2609 | */
|
---|
2610 | void QGraphicsAnchorLayoutPrivate::identifyFloatItems(const QSet<AnchorData *> &visited, Orientation orientation)
|
---|
2611 | {
|
---|
2612 | QSet<QGraphicsLayoutItem *> nonFloating;
|
---|
2613 |
|
---|
2614 | foreach (const AnchorData *ad, visited)
|
---|
2615 | identifyNonFloatItems_helper(ad, &nonFloating);
|
---|
2616 |
|
---|
2617 | QSet<QGraphicsLayoutItem *> allItems;
|
---|
2618 | foreach (QGraphicsLayoutItem *item, items)
|
---|
2619 | allItems.insert(item);
|
---|
2620 | m_floatItems[orientation] = allItems - nonFloating;
|
---|
2621 | }
|
---|
2622 |
|
---|
2623 |
|
---|
2624 | /*!
|
---|
2625 | \internal
|
---|
2626 |
|
---|
2627 | Given an anchor, if it is an internal anchor and Normal we must mark it's item as non-float.
|
---|
2628 | If the anchor is Sequential or Parallel, we must iterate on its children recursively until we reach
|
---|
2629 | internal anchors (items).
|
---|
2630 | */
|
---|
2631 | void QGraphicsAnchorLayoutPrivate::identifyNonFloatItems_helper(const AnchorData *ad, QSet<QGraphicsLayoutItem *> *nonFloatingItemsIdentifiedSoFar)
|
---|
2632 | {
|
---|
2633 | Q_Q(QGraphicsAnchorLayout);
|
---|
2634 |
|
---|
2635 | switch(ad->type) {
|
---|
2636 | case AnchorData::Normal:
|
---|
2637 | if (ad->item && ad->item != q)
|
---|
2638 | nonFloatingItemsIdentifiedSoFar->insert(ad->item);
|
---|
2639 | break;
|
---|
2640 | case AnchorData::Sequential:
|
---|
2641 | foreach (const AnchorData *d, static_cast<const SequentialAnchorData *>(ad)->m_edges)
|
---|
2642 | identifyNonFloatItems_helper(d, nonFloatingItemsIdentifiedSoFar);
|
---|
2643 | break;
|
---|
2644 | case AnchorData::Parallel:
|
---|
2645 | identifyNonFloatItems_helper(static_cast<const ParallelAnchorData *>(ad)->firstEdge, nonFloatingItemsIdentifiedSoFar);
|
---|
2646 | identifyNonFloatItems_helper(static_cast<const ParallelAnchorData *>(ad)->secondEdge, nonFloatingItemsIdentifiedSoFar);
|
---|
2647 | break;
|
---|
2648 | }
|
---|
2649 | }
|
---|
2650 |
|
---|
2651 | /*!
|
---|
2652 | \internal
|
---|
2653 |
|
---|
2654 | Use the current vertices distance to calculate and set the geometry of
|
---|
2655 | each item.
|
---|
2656 | */
|
---|
2657 | void QGraphicsAnchorLayoutPrivate::setItemsGeometries(const QRectF &geom)
|
---|
2658 | {
|
---|
2659 | Q_Q(QGraphicsAnchorLayout);
|
---|
2660 | AnchorVertex *firstH, *secondH, *firstV, *secondV;
|
---|
2661 |
|
---|
2662 | qreal top;
|
---|
2663 | qreal left;
|
---|
2664 | qreal right;
|
---|
2665 |
|
---|
2666 | q->getContentsMargins(&left, &top, &right, 0);
|
---|
2667 | const Qt::LayoutDirection visualDir = visualDirection();
|
---|
2668 | if (visualDir == Qt::RightToLeft)
|
---|
2669 | qSwap(left, right);
|
---|
2670 |
|
---|
2671 | left += geom.left();
|
---|
2672 | top += geom.top();
|
---|
2673 | right = geom.right() - right;
|
---|
2674 |
|
---|
2675 | foreach (QGraphicsLayoutItem *item, items) {
|
---|
2676 | QRectF newGeom;
|
---|
2677 | QSizeF itemPreferredSize = item->effectiveSizeHint(Qt::PreferredSize);
|
---|
2678 | if (m_floatItems[Horizontal].contains(item)) {
|
---|
2679 | newGeom.setLeft(0);
|
---|
2680 | newGeom.setRight(itemPreferredSize.width());
|
---|
2681 | } else {
|
---|
2682 | firstH = internalVertex(item, Qt::AnchorLeft);
|
---|
2683 | secondH = internalVertex(item, Qt::AnchorRight);
|
---|
2684 |
|
---|
2685 | if (visualDir == Qt::LeftToRight) {
|
---|
2686 | newGeom.setLeft(left + firstH->distance);
|
---|
2687 | newGeom.setRight(left + secondH->distance);
|
---|
2688 | } else {
|
---|
2689 | newGeom.setLeft(right - secondH->distance);
|
---|
2690 | newGeom.setRight(right - firstH->distance);
|
---|
2691 | }
|
---|
2692 | }
|
---|
2693 |
|
---|
2694 | if (m_floatItems[Vertical].contains(item)) {
|
---|
2695 | newGeom.setTop(0);
|
---|
2696 | newGeom.setBottom(itemPreferredSize.height());
|
---|
2697 | } else {
|
---|
2698 | firstV = internalVertex(item, Qt::AnchorTop);
|
---|
2699 | secondV = internalVertex(item, Qt::AnchorBottom);
|
---|
2700 |
|
---|
2701 | newGeom.setTop(top + firstV->distance);
|
---|
2702 | newGeom.setBottom(top + secondV->distance);
|
---|
2703 | }
|
---|
2704 |
|
---|
2705 | item->setGeometry(newGeom);
|
---|
2706 | }
|
---|
2707 | }
|
---|
2708 |
|
---|
2709 | /*!
|
---|
2710 | \internal
|
---|
2711 |
|
---|
2712 | Calculate the position of each vertex based on the paths to each of
|
---|
2713 | them as well as the current edges sizes.
|
---|
2714 | */
|
---|
2715 | void QGraphicsAnchorLayoutPrivate::calculateVertexPositions(
|
---|
2716 | QGraphicsAnchorLayoutPrivate::Orientation orientation)
|
---|
2717 | {
|
---|
2718 | QQueue<QPair<AnchorVertex *, AnchorVertex *> > queue;
|
---|
2719 | QSet<AnchorVertex *> visited;
|
---|
2720 |
|
---|
2721 | // Get root vertex
|
---|
2722 | AnchorVertex *root = layoutFirstVertex[orientation];
|
---|
2723 |
|
---|
2724 | root->distance = 0;
|
---|
2725 | visited.insert(root);
|
---|
2726 |
|
---|
2727 | // Add initial edges to the queue
|
---|
2728 | foreach (AnchorVertex *v, graph[orientation].adjacentVertices(root)) {
|
---|
2729 | queue.enqueue(qMakePair(root, v));
|
---|
2730 | }
|
---|
2731 |
|
---|
2732 | // Do initial calculation required by "interpolateEdge()"
|
---|
2733 | setupEdgesInterpolation(orientation);
|
---|
2734 |
|
---|
2735 | // Traverse the graph and calculate vertex positions
|
---|
2736 | while (!queue.isEmpty()) {
|
---|
2737 | QPair<AnchorVertex *, AnchorVertex *> pair = queue.dequeue();
|
---|
2738 | AnchorData *edge = graph[orientation].edgeData(pair.first, pair.second);
|
---|
2739 |
|
---|
2740 | if (visited.contains(pair.second))
|
---|
2741 | continue;
|
---|
2742 |
|
---|
2743 | visited.insert(pair.second);
|
---|
2744 | interpolateEdge(pair.first, edge);
|
---|
2745 |
|
---|
2746 | QList<AnchorVertex *> adjacents = graph[orientation].adjacentVertices(pair.second);
|
---|
2747 | for (int i = 0; i < adjacents.count(); ++i) {
|
---|
2748 | if (!visited.contains(adjacents.at(i)))
|
---|
2749 | queue.enqueue(qMakePair(pair.second, adjacents.at(i)));
|
---|
2750 | }
|
---|
2751 | }
|
---|
2752 | }
|
---|
2753 |
|
---|
2754 | /*!
|
---|
2755 | \internal
|
---|
2756 |
|
---|
2757 | Calculate interpolation parameters based on current Layout Size.
|
---|
2758 | Must be called once before calling "interpolateEdgeSize()" for
|
---|
2759 | the edges.
|
---|
2760 | */
|
---|
2761 | void QGraphicsAnchorLayoutPrivate::setupEdgesInterpolation(
|
---|
2762 | Orientation orientation)
|
---|
2763 | {
|
---|
2764 | Q_Q(QGraphicsAnchorLayout);
|
---|
2765 |
|
---|
2766 | qreal current;
|
---|
2767 | current = (orientation == Horizontal) ? q->contentsRect().width() : q->contentsRect().height();
|
---|
2768 |
|
---|
2769 | QPair<Interval, qreal> result;
|
---|
2770 | result = getFactor(current,
|
---|
2771 | sizeHints[orientation][Qt::MinimumSize],
|
---|
2772 | sizeHints[orientation][Qt::PreferredSize],
|
---|
2773 | sizeHints[orientation][Qt::PreferredSize],
|
---|
2774 | sizeHints[orientation][Qt::PreferredSize],
|
---|
2775 | sizeHints[orientation][Qt::MaximumSize]);
|
---|
2776 |
|
---|
2777 | interpolationInterval[orientation] = result.first;
|
---|
2778 | interpolationProgress[orientation] = result.second;
|
---|
2779 | }
|
---|
2780 |
|
---|
2781 | /*!
|
---|
2782 | \internal
|
---|
2783 |
|
---|
2784 | Calculate the current Edge size based on the current Layout size and the
|
---|
2785 | size the edge is supposed to have when the layout is at its:
|
---|
2786 |
|
---|
2787 | - minimum size,
|
---|
2788 | - preferred size,
|
---|
2789 | - maximum size.
|
---|
2790 |
|
---|
2791 | These three key values are calculated in advance using linear
|
---|
2792 | programming (more expensive) or the simplification algorithm, then
|
---|
2793 | subsequential resizes of the parent layout require a simple
|
---|
2794 | interpolation.
|
---|
2795 | */
|
---|
2796 | void QGraphicsAnchorLayoutPrivate::interpolateEdge(AnchorVertex *base, AnchorData *edge)
|
---|
2797 | {
|
---|
2798 | const Orientation orientation = Orientation(edge->orientation);
|
---|
2799 | const QPair<Interval, qreal> factor(interpolationInterval[orientation],
|
---|
2800 | interpolationProgress[orientation]);
|
---|
2801 |
|
---|
2802 | qreal edgeDistance = interpolate(factor, edge->sizeAtMinimum, edge->sizeAtPreferred,
|
---|
2803 | edge->sizeAtPreferred, edge->sizeAtPreferred,
|
---|
2804 | edge->sizeAtMaximum);
|
---|
2805 |
|
---|
2806 | Q_ASSERT(edge->from == base || edge->to == base);
|
---|
2807 |
|
---|
2808 | // Calculate the distance for the vertex opposite to the base
|
---|
2809 | if (edge->from == base) {
|
---|
2810 | edge->to->distance = base->distance + edgeDistance;
|
---|
2811 | } else {
|
---|
2812 | edge->from->distance = base->distance - edgeDistance;
|
---|
2813 | }
|
---|
2814 | }
|
---|
2815 |
|
---|
2816 | bool QGraphicsAnchorLayoutPrivate::solveMinMax(const QList<QSimplexConstraint *> &constraints,
|
---|
2817 | GraphPath path, qreal *min, qreal *max)
|
---|
2818 | {
|
---|
2819 | QSimplex simplex;
|
---|
2820 | bool feasible = simplex.setConstraints(constraints);
|
---|
2821 | if (feasible) {
|
---|
2822 | // Obtain the objective constraint
|
---|
2823 | QSimplexConstraint objective;
|
---|
2824 | QSet<AnchorData *>::const_iterator iter;
|
---|
2825 | for (iter = path.positives.constBegin(); iter != path.positives.constEnd(); ++iter)
|
---|
2826 | objective.variables.insert(*iter, 1.0);
|
---|
2827 |
|
---|
2828 | for (iter = path.negatives.constBegin(); iter != path.negatives.constEnd(); ++iter)
|
---|
2829 | objective.variables.insert(*iter, -1.0);
|
---|
2830 |
|
---|
2831 | const qreal objectiveOffset = (path.positives.count() - path.negatives.count()) * g_offset;
|
---|
2832 | simplex.setObjective(&objective);
|
---|
2833 |
|
---|
2834 | // Calculate minimum values
|
---|
2835 | *min = simplex.solveMin() - objectiveOffset;
|
---|
2836 |
|
---|
2837 | // Save sizeAtMinimum results
|
---|
2838 | QList<AnchorData *> variables = getVariables(constraints);
|
---|
2839 | for (int i = 0; i < variables.size(); ++i) {
|
---|
2840 | AnchorData *ad = static_cast<AnchorData *>(variables.at(i));
|
---|
2841 | ad->sizeAtMinimum = ad->result - g_offset;
|
---|
2842 | }
|
---|
2843 |
|
---|
2844 | // Calculate maximum values
|
---|
2845 | *max = simplex.solveMax() - objectiveOffset;
|
---|
2846 |
|
---|
2847 | // Save sizeAtMaximum results
|
---|
2848 | for (int i = 0; i < variables.size(); ++i) {
|
---|
2849 | AnchorData *ad = static_cast<AnchorData *>(variables.at(i));
|
---|
2850 | ad->sizeAtMaximum = ad->result - g_offset;
|
---|
2851 | }
|
---|
2852 | }
|
---|
2853 | return feasible;
|
---|
2854 | }
|
---|
2855 |
|
---|
2856 | enum slackType { Grower = -1, Shrinker = 1 };
|
---|
2857 | static QPair<QSimplexVariable *, QSimplexConstraint *> createSlack(QSimplexConstraint *sizeConstraint,
|
---|
2858 | qreal interval, slackType type)
|
---|
2859 | {
|
---|
2860 | QSimplexVariable *slack = new QSimplexVariable;
|
---|
2861 | sizeConstraint->variables.insert(slack, type);
|
---|
2862 |
|
---|
2863 | QSimplexConstraint *limit = new QSimplexConstraint;
|
---|
2864 | limit->variables.insert(slack, 1.0);
|
---|
2865 | limit->ratio = QSimplexConstraint::LessOrEqual;
|
---|
2866 | limit->constant = interval;
|
---|
2867 |
|
---|
2868 | return qMakePair(slack, limit);
|
---|
2869 | }
|
---|
2870 |
|
---|
2871 | bool QGraphicsAnchorLayoutPrivate::solvePreferred(const QList<QSimplexConstraint *> &constraints,
|
---|
2872 | const QList<AnchorData *> &variables)
|
---|
2873 | {
|
---|
2874 | QList<QSimplexConstraint *> preferredConstraints;
|
---|
2875 | QList<QSimplexVariable *> preferredVariables;
|
---|
2876 | QSimplexConstraint objective;
|
---|
2877 |
|
---|
2878 | // Fill the objective coefficients for this variable. In the
|
---|
2879 | // end the objective function will be
|
---|
2880 | //
|
---|
2881 | // z = n * (A_shrinker_hard + A_grower_hard + B_shrinker_hard + B_grower_hard + ...) +
|
---|
2882 | // (A_shrinker_soft + A_grower_soft + B_shrinker_soft + B_grower_soft + ...)
|
---|
2883 | //
|
---|
2884 | // where n is the number of variables that have
|
---|
2885 | // slacks. Note that here we use the number of variables
|
---|
2886 | // as coefficient, this is to mark the "shrinker slack
|
---|
2887 | // variable" less likely to get value than the "grower
|
---|
2888 | // slack variable".
|
---|
2889 |
|
---|
2890 | // This will fill the values for the structural constraints
|
---|
2891 | // and we now fill the values for the slack constraints (one per variable),
|
---|
2892 | // which have this form (the constant A_pref was set when creating the slacks):
|
---|
2893 | //
|
---|
2894 | // A + A_shrinker_hard + A_shrinker_soft - A_grower_hard - A_grower_soft = A_pref
|
---|
2895 | //
|
---|
2896 | for (int i = 0; i < variables.size(); ++i) {
|
---|
2897 | AnchorData *ad = variables.at(i);
|
---|
2898 |
|
---|
2899 | // The layout original structure anchors are not relevant in preferred size calculation
|
---|
2900 | if (ad->isLayoutAnchor)
|
---|
2901 | continue;
|
---|
2902 |
|
---|
2903 | // By default, all variables are equal to their preferred size. If they have room to
|
---|
2904 | // grow or shrink, such flexibility will be added by the additional variables below.
|
---|
2905 | QSimplexConstraint *sizeConstraint = new QSimplexConstraint;
|
---|
2906 | preferredConstraints += sizeConstraint;
|
---|
2907 | sizeConstraint->variables.insert(ad, 1.0);
|
---|
2908 | sizeConstraint->constant = ad->prefSize + g_offset;
|
---|
2909 |
|
---|
2910 | // Can easily shrink
|
---|
2911 | QPair<QSimplexVariable *, QSimplexConstraint *> slack;
|
---|
2912 | const qreal softShrinkInterval = ad->prefSize - ad->minPrefSize;
|
---|
2913 | if (softShrinkInterval) {
|
---|
2914 | slack = createSlack(sizeConstraint, softShrinkInterval, Shrinker);
|
---|
2915 | preferredVariables += slack.first;
|
---|
2916 | preferredConstraints += slack.second;
|
---|
2917 |
|
---|
2918 | // Add to objective with ratio == 1 (soft)
|
---|
2919 | objective.variables.insert(slack.first, 1.0);
|
---|
2920 | }
|
---|
2921 |
|
---|
2922 | // Can easily grow
|
---|
2923 | const qreal softGrowInterval = ad->maxPrefSize - ad->prefSize;
|
---|
2924 | if (softGrowInterval) {
|
---|
2925 | slack = createSlack(sizeConstraint, softGrowInterval, Grower);
|
---|
2926 | preferredVariables += slack.first;
|
---|
2927 | preferredConstraints += slack.second;
|
---|
2928 |
|
---|
2929 | // Add to objective with ratio == 1 (soft)
|
---|
2930 | objective.variables.insert(slack.first, 1.0);
|
---|
2931 | }
|
---|
2932 |
|
---|
2933 | // Can shrink if really necessary
|
---|
2934 | const qreal hardShrinkInterval = ad->minPrefSize - ad->minSize;
|
---|
2935 | if (hardShrinkInterval) {
|
---|
2936 | slack = createSlack(sizeConstraint, hardShrinkInterval, Shrinker);
|
---|
2937 | preferredVariables += slack.first;
|
---|
2938 | preferredConstraints += slack.second;
|
---|
2939 |
|
---|
2940 | // Add to objective with ratio == N (hard)
|
---|
2941 | objective.variables.insert(slack.first, variables.size());
|
---|
2942 | }
|
---|
2943 |
|
---|
2944 | // Can grow if really necessary
|
---|
2945 | const qreal hardGrowInterval = ad->maxSize - ad->maxPrefSize;
|
---|
2946 | if (hardGrowInterval) {
|
---|
2947 | slack = createSlack(sizeConstraint, hardGrowInterval, Grower);
|
---|
2948 | preferredVariables += slack.first;
|
---|
2949 | preferredConstraints += slack.second;
|
---|
2950 |
|
---|
2951 | // Add to objective with ratio == N (hard)
|
---|
2952 | objective.variables.insert(slack.first, variables.size());
|
---|
2953 | }
|
---|
2954 | }
|
---|
2955 |
|
---|
2956 | QSimplex *simplex = new QSimplex;
|
---|
2957 | bool feasible = simplex->setConstraints(constraints + preferredConstraints);
|
---|
2958 | if (feasible) {
|
---|
2959 | simplex->setObjective(&objective);
|
---|
2960 |
|
---|
2961 | // Calculate minimum values
|
---|
2962 | simplex->solveMin();
|
---|
2963 |
|
---|
2964 | // Save sizeAtPreferred results
|
---|
2965 | for (int i = 0; i < variables.size(); ++i) {
|
---|
2966 | AnchorData *ad = variables.at(i);
|
---|
2967 | ad->sizeAtPreferred = ad->result - g_offset;
|
---|
2968 | }
|
---|
2969 |
|
---|
2970 | // Make sure we delete the simplex solver -before- we delete the
|
---|
2971 | // constraints used by it.
|
---|
2972 | delete simplex;
|
---|
2973 | }
|
---|
2974 | // Delete constraints and variables we created.
|
---|
2975 | qDeleteAll(preferredConstraints);
|
---|
2976 | qDeleteAll(preferredVariables);
|
---|
2977 |
|
---|
2978 | return feasible;
|
---|
2979 | }
|
---|
2980 |
|
---|
2981 | /*!
|
---|
2982 | \internal
|
---|
2983 | Returns true if there are no arrangement that satisfies all constraints.
|
---|
2984 | Otherwise returns false.
|
---|
2985 |
|
---|
2986 | \sa addAnchor()
|
---|
2987 | */
|
---|
2988 | bool QGraphicsAnchorLayoutPrivate::hasConflicts() const
|
---|
2989 | {
|
---|
2990 | QGraphicsAnchorLayoutPrivate *that = const_cast<QGraphicsAnchorLayoutPrivate*>(this);
|
---|
2991 | that->calculateGraphs();
|
---|
2992 |
|
---|
2993 | bool floatConflict = !m_floatItems[0].isEmpty() || !m_floatItems[1].isEmpty();
|
---|
2994 |
|
---|
2995 | return graphHasConflicts[0] || graphHasConflicts[1] || floatConflict;
|
---|
2996 | }
|
---|
2997 |
|
---|
2998 | #ifdef QT_DEBUG
|
---|
2999 | void QGraphicsAnchorLayoutPrivate::dumpGraph(const QString &name)
|
---|
3000 | {
|
---|
3001 | QFile file(QString::fromAscii("anchorlayout.%1.dot").arg(name));
|
---|
3002 | if (!file.open(QIODevice::WriteOnly | QIODevice::Text | QIODevice::Truncate))
|
---|
3003 | qWarning("Could not write to %s", file.fileName().toLocal8Bit().constData());
|
---|
3004 |
|
---|
3005 | QString str = QString::fromAscii("digraph anchorlayout {\nnode [shape=\"rect\"]\n%1}");
|
---|
3006 | QString dotContents = graph[0].serializeToDot();
|
---|
3007 | dotContents += graph[1].serializeToDot();
|
---|
3008 | file.write(str.arg(dotContents).toLocal8Bit());
|
---|
3009 |
|
---|
3010 | file.close();
|
---|
3011 | }
|
---|
3012 | #endif
|
---|
3013 |
|
---|
3014 | QT_END_NAMESPACE
|
---|
3015 | #endif //QT_NO_GRAPHICSVIEW
|
---|