1 | /*
|
---|
2 | $Id: malloc.c,v 1.4 2006/03/30 16:47:29 wg Exp $
|
---|
3 |
|
---|
4 | This version of malloc.c was adapted for ptmalloc3 by Wolfram Gloger
|
---|
5 | <[email protected]>. Therefore, some of the comments below do not apply
|
---|
6 | for this modified version. However, it is the intention to keep
|
---|
7 | differences to Doug Lea's original version minimal, hence the
|
---|
8 | comments were mostly left unchanged.
|
---|
9 |
|
---|
10 | -----------------------------------------------------------------------
|
---|
11 |
|
---|
12 | This is a version (aka dlmalloc) of malloc/free/realloc written by
|
---|
13 | Doug Lea and released to the public domain, as explained at
|
---|
14 | http://creativecommons.org/licenses/publicdomain. Send questions,
|
---|
15 | comments, complaints, performance data, etc to [email protected]
|
---|
16 |
|
---|
17 | * Version pre-2.8.4 Wed Mar 29 19:46:29 2006 (dl at gee)
|
---|
18 |
|
---|
19 | Note: There may be an updated version of this malloc obtainable at
|
---|
20 | ftp://gee.cs.oswego.edu/pub/misc/malloc.c
|
---|
21 | Check before installing!
|
---|
22 |
|
---|
23 | * Quickstart
|
---|
24 |
|
---|
25 | This library is all in one file to simplify the most common usage:
|
---|
26 | ftp it, compile it (-O3), and link it into another program. All of
|
---|
27 | the compile-time options default to reasonable values for use on
|
---|
28 | most platforms. You might later want to step through various
|
---|
29 | compile-time and dynamic tuning options.
|
---|
30 |
|
---|
31 | For convenience, an include file for code using this malloc is at:
|
---|
32 | ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h
|
---|
33 | You don't really need this .h file unless you call functions not
|
---|
34 | defined in your system include files. The .h file contains only the
|
---|
35 | excerpts from this file needed for using this malloc on ANSI C/C++
|
---|
36 | systems, so long as you haven't changed compile-time options about
|
---|
37 | naming and tuning parameters. If you do, then you can create your
|
---|
38 | own malloc.h that does include all settings by cutting at the point
|
---|
39 | indicated below. Note that you may already by default be using a C
|
---|
40 | library containing a malloc that is based on some version of this
|
---|
41 | malloc (for example in linux). You might still want to use the one
|
---|
42 | in this file to customize settings or to avoid overheads associated
|
---|
43 | with library versions.
|
---|
44 |
|
---|
45 | * Vital statistics:
|
---|
46 |
|
---|
47 | Supported pointer/size_t representation: 4 or 8 bytes
|
---|
48 | size_t MUST be an unsigned type of the same width as
|
---|
49 | pointers. (If you are using an ancient system that declares
|
---|
50 | size_t as a signed type, or need it to be a different width
|
---|
51 | than pointers, you can use a previous release of this malloc
|
---|
52 | (e.g. 2.7.2) supporting these.)
|
---|
53 |
|
---|
54 | Alignment: 8 bytes (default)
|
---|
55 | This suffices for nearly all current machines and C compilers.
|
---|
56 | However, you can define MALLOC_ALIGNMENT to be wider than this
|
---|
57 | if necessary (up to 128bytes), at the expense of using more space.
|
---|
58 |
|
---|
59 | Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
|
---|
60 | 8 or 16 bytes (if 8byte sizes)
|
---|
61 | Each malloced chunk has a hidden word of overhead holding size
|
---|
62 | and status information, and additional cross-check word
|
---|
63 | if FOOTERS is defined.
|
---|
64 |
|
---|
65 | Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
|
---|
66 | 8-byte ptrs: 32 bytes (including overhead)
|
---|
67 |
|
---|
68 | Even a request for zero bytes (i.e., malloc(0)) returns a
|
---|
69 | pointer to something of the minimum allocatable size.
|
---|
70 | The maximum overhead wastage (i.e., number of extra bytes
|
---|
71 | allocated than were requested in malloc) is less than or equal
|
---|
72 | to the minimum size, except for requests >= mmap_threshold that
|
---|
73 | are serviced via mmap(), where the worst case wastage is about
|
---|
74 | 32 bytes plus the remainder from a system page (the minimal
|
---|
75 | mmap unit); typically 4096 or 8192 bytes.
|
---|
76 |
|
---|
77 | Security: static-safe; optionally more or less
|
---|
78 | The "security" of malloc refers to the ability of malicious
|
---|
79 | code to accentuate the effects of errors (for example, freeing
|
---|
80 | space that is not currently malloc'ed or overwriting past the
|
---|
81 | ends of chunks) in code that calls malloc. This malloc
|
---|
82 | guarantees not to modify any memory locations below the base of
|
---|
83 | heap, i.e., static variables, even in the presence of usage
|
---|
84 | errors. The routines additionally detect most improper frees
|
---|
85 | and reallocs. All this holds as long as the static bookkeeping
|
---|
86 | for malloc itself is not corrupted by some other means. This
|
---|
87 | is only one aspect of security -- these checks do not, and
|
---|
88 | cannot, detect all possible programming errors.
|
---|
89 |
|
---|
90 | If FOOTERS is defined nonzero, then each allocated chunk
|
---|
91 | carries an additional check word to verify that it was malloced
|
---|
92 | from its space. These check words are the same within each
|
---|
93 | execution of a program using malloc, but differ across
|
---|
94 | executions, so externally crafted fake chunks cannot be
|
---|
95 | freed. This improves security by rejecting frees/reallocs that
|
---|
96 | could corrupt heap memory, in addition to the checks preventing
|
---|
97 | writes to statics that are always on. This may further improve
|
---|
98 | security at the expense of time and space overhead. (Note that
|
---|
99 | FOOTERS may also be worth using with MSPACES.)
|
---|
100 |
|
---|
101 | By default detected errors cause the program to abort (calling
|
---|
102 | "abort()"). You can override this to instead proceed past
|
---|
103 | errors by defining PROCEED_ON_ERROR. In this case, a bad free
|
---|
104 | has no effect, and a malloc that encounters a bad address
|
---|
105 | caused by user overwrites will ignore the bad address by
|
---|
106 | dropping pointers and indices to all known memory. This may
|
---|
107 | be appropriate for programs that should continue if at all
|
---|
108 | possible in the face of programming errors, although they may
|
---|
109 | run out of memory because dropped memory is never reclaimed.
|
---|
110 |
|
---|
111 | If you don't like either of these options, you can define
|
---|
112 | CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
|
---|
113 | else. And if if you are sure that your program using malloc has
|
---|
114 | no errors or vulnerabilities, you can define INSECURE to 1,
|
---|
115 | which might (or might not) provide a small performance improvement.
|
---|
116 |
|
---|
117 | Thread-safety: NOT thread-safe unless USE_LOCKS defined
|
---|
118 | When USE_LOCKS is defined, each public call to malloc, free,
|
---|
119 | etc is surrounded with either a pthread mutex or a win32
|
---|
120 | spinlock (depending on WIN32). This is not especially fast, and
|
---|
121 | can be a major bottleneck. It is designed only to provide
|
---|
122 | minimal protection in concurrent environments, and to provide a
|
---|
123 | basis for extensions. If you are using malloc in a concurrent
|
---|
124 | program, consider instead using nedmalloc
|
---|
125 | (http://www.nedprod.com/programs/portable/nedmalloc/) or
|
---|
126 | ptmalloc (See http://www.malloc.de), which are derived
|
---|
127 | from versions of this malloc.
|
---|
128 |
|
---|
129 | System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
|
---|
130 | This malloc can use unix sbrk or any emulation (invoked using
|
---|
131 | the CALL_MORECORE macro) and/or mmap/munmap or any emulation
|
---|
132 | (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
|
---|
133 | memory. On most unix systems, it tends to work best if both
|
---|
134 | MORECORE and MMAP are enabled. On Win32, it uses emulations
|
---|
135 | based on VirtualAlloc. It also uses common C library functions
|
---|
136 | like memset.
|
---|
137 |
|
---|
138 | Compliance: I believe it is compliant with the Single Unix Specification
|
---|
139 | (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
|
---|
140 | others as well.
|
---|
141 |
|
---|
142 | * Overview of algorithms
|
---|
143 |
|
---|
144 | This is not the fastest, most space-conserving, most portable, or
|
---|
145 | most tunable malloc ever written. However it is among the fastest
|
---|
146 | while also being among the most space-conserving, portable and
|
---|
147 | tunable. Consistent balance across these factors results in a good
|
---|
148 | general-purpose allocator for malloc-intensive programs.
|
---|
149 |
|
---|
150 | In most ways, this malloc is a best-fit allocator. Generally, it
|
---|
151 | chooses the best-fitting existing chunk for a request, with ties
|
---|
152 | broken in approximately least-recently-used order. (This strategy
|
---|
153 | normally maintains low fragmentation.) However, for requests less
|
---|
154 | than 256bytes, it deviates from best-fit when there is not an
|
---|
155 | exactly fitting available chunk by preferring to use space adjacent
|
---|
156 | to that used for the previous small request, as well as by breaking
|
---|
157 | ties in approximately most-recently-used order. (These enhance
|
---|
158 | locality of series of small allocations.) And for very large requests
|
---|
159 | (>= 256Kb by default), it relies on system memory mapping
|
---|
160 | facilities, if supported. (This helps avoid carrying around and
|
---|
161 | possibly fragmenting memory used only for large chunks.)
|
---|
162 |
|
---|
163 | All operations (except malloc_stats and mallinfo) have execution
|
---|
164 | times that are bounded by a constant factor of the number of bits in
|
---|
165 | a size_t, not counting any clearing in calloc or copying in realloc,
|
---|
166 | or actions surrounding MORECORE and MMAP that have times
|
---|
167 | proportional to the number of non-contiguous regions returned by
|
---|
168 | system allocation routines, which is often just 1. In real-time
|
---|
169 | applications, you can optionally suppress segment traversals using
|
---|
170 | NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
|
---|
171 | system allocators return non-contiguous spaces, at the typical
|
---|
172 | expense of carrying around more memory and increased fragmentation.
|
---|
173 |
|
---|
174 | The implementation is not very modular and seriously overuses
|
---|
175 | macros. Perhaps someday all C compilers will do as good a job
|
---|
176 | inlining modular code as can now be done by brute-force expansion,
|
---|
177 | but now, enough of them seem not to.
|
---|
178 |
|
---|
179 | Some compilers issue a lot of warnings about code that is
|
---|
180 | dead/unreachable only on some platforms, and also about intentional
|
---|
181 | uses of negation on unsigned types. All known cases of each can be
|
---|
182 | ignored.
|
---|
183 |
|
---|
184 | For a longer but out of date high-level description, see
|
---|
185 | http://gee.cs.oswego.edu/dl/html/malloc.html
|
---|
186 |
|
---|
187 | * MSPACES
|
---|
188 | If MSPACES is defined, then in addition to malloc, free, etc.,
|
---|
189 | this file also defines mspace_malloc, mspace_free, etc. These
|
---|
190 | are versions of malloc routines that take an "mspace" argument
|
---|
191 | obtained using create_mspace, to control all internal bookkeeping.
|
---|
192 | If ONLY_MSPACES is defined, only these versions are compiled.
|
---|
193 | So if you would like to use this allocator for only some allocations,
|
---|
194 | and your system malloc for others, you can compile with
|
---|
195 | ONLY_MSPACES and then do something like...
|
---|
196 | static mspace mymspace = create_mspace(0,0); // for example
|
---|
197 | #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
|
---|
198 |
|
---|
199 | (Note: If you only need one instance of an mspace, you can instead
|
---|
200 | use "USE_DL_PREFIX" to relabel the global malloc.)
|
---|
201 |
|
---|
202 | You can similarly create thread-local allocators by storing
|
---|
203 | mspaces as thread-locals. For example:
|
---|
204 | static __thread mspace tlms = 0;
|
---|
205 | void* tlmalloc(size_t bytes) {
|
---|
206 | if (tlms == 0) tlms = create_mspace(0, 0);
|
---|
207 | return mspace_malloc(tlms, bytes);
|
---|
208 | }
|
---|
209 | void tlfree(void* mem) { mspace_free(tlms, mem); }
|
---|
210 |
|
---|
211 | Unless FOOTERS is defined, each mspace is completely independent.
|
---|
212 | You cannot allocate from one and free to another (although
|
---|
213 | conformance is only weakly checked, so usage errors are not always
|
---|
214 | caught). If FOOTERS is defined, then each chunk carries around a tag
|
---|
215 | indicating its originating mspace, and frees are directed to their
|
---|
216 | originating spaces.
|
---|
217 |
|
---|
218 | ------------------------- Compile-time options ---------------------------
|
---|
219 |
|
---|
220 | Be careful in setting #define values for numerical constants of type
|
---|
221 | size_t. On some systems, literal values are not automatically extended
|
---|
222 | to size_t precision unless they are explicitly casted. You can also
|
---|
223 | use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
|
---|
224 |
|
---|
225 | WIN32 default: defined if _WIN32 defined
|
---|
226 | Defining WIN32 sets up defaults for MS environment and compilers.
|
---|
227 | Otherwise defaults are for unix.
|
---|
228 |
|
---|
229 | MALLOC_ALIGNMENT default: (size_t)8
|
---|
230 | Controls the minimum alignment for malloc'ed chunks. It must be a
|
---|
231 | power of two and at least 8, even on machines for which smaller
|
---|
232 | alignments would suffice. It may be defined as larger than this
|
---|
233 | though. Note however that code and data structures are optimized for
|
---|
234 | the case of 8-byte alignment.
|
---|
235 |
|
---|
236 | MSPACES default: 0 (false)
|
---|
237 | If true, compile in support for independent allocation spaces.
|
---|
238 | This is only supported if HAVE_MMAP is true.
|
---|
239 |
|
---|
240 | ONLY_MSPACES default: 0 (false)
|
---|
241 | If true, only compile in mspace versions, not regular versions.
|
---|
242 |
|
---|
243 | USE_LOCKS default: 0 (false)
|
---|
244 | Causes each call to each public routine to be surrounded with
|
---|
245 | pthread or WIN32 mutex lock/unlock. (If set true, this can be
|
---|
246 | overridden on a per-mspace basis for mspace versions.) If set to a
|
---|
247 | non-zero value other than 1, locks are used, but their
|
---|
248 | implementation is left out, so lock functions must be supplied manually.
|
---|
249 |
|
---|
250 | USE_SPIN_LOCKS default: 1 iff USE_LOCKS and on x86 using gcc or MSC
|
---|
251 | If true, uses custom spin locks for locking. This is currently
|
---|
252 | supported only for x86 platforms using gcc or recent MS compilers.
|
---|
253 | Otherwise, posix locks or win32 critical sections are used.
|
---|
254 |
|
---|
255 | FOOTERS default: 0
|
---|
256 | If true, provide extra checking and dispatching by placing
|
---|
257 | information in the footers of allocated chunks. This adds
|
---|
258 | space and time overhead.
|
---|
259 |
|
---|
260 | INSECURE default: 0
|
---|
261 | If true, omit checks for usage errors and heap space overwrites.
|
---|
262 |
|
---|
263 | USE_DL_PREFIX default: NOT defined
|
---|
264 | Causes compiler to prefix all public routines with the string 'dl'.
|
---|
265 | This can be useful when you only want to use this malloc in one part
|
---|
266 | of a program, using your regular system malloc elsewhere.
|
---|
267 |
|
---|
268 | ABORT default: defined as abort()
|
---|
269 | Defines how to abort on failed checks. On most systems, a failed
|
---|
270 | check cannot die with an "assert" or even print an informative
|
---|
271 | message, because the underlying print routines in turn call malloc,
|
---|
272 | which will fail again. Generally, the best policy is to simply call
|
---|
273 | abort(). It's not very useful to do more than this because many
|
---|
274 | errors due to overwriting will show up as address faults (null, odd
|
---|
275 | addresses etc) rather than malloc-triggered checks, so will also
|
---|
276 | abort. Also, most compilers know that abort() does not return, so
|
---|
277 | can better optimize code conditionally calling it.
|
---|
278 |
|
---|
279 | PROCEED_ON_ERROR default: defined as 0 (false)
|
---|
280 | Controls whether detected bad addresses cause them to bypassed
|
---|
281 | rather than aborting. If set, detected bad arguments to free and
|
---|
282 | realloc are ignored. And all bookkeeping information is zeroed out
|
---|
283 | upon a detected overwrite of freed heap space, thus losing the
|
---|
284 | ability to ever return it from malloc again, but enabling the
|
---|
285 | application to proceed. If PROCEED_ON_ERROR is defined, the
|
---|
286 | static variable malloc_corruption_error_count is compiled in
|
---|
287 | and can be examined to see if errors have occurred. This option
|
---|
288 | generates slower code than the default abort policy.
|
---|
289 |
|
---|
290 | DEBUG default: NOT defined
|
---|
291 | The DEBUG setting is mainly intended for people trying to modify
|
---|
292 | this code or diagnose problems when porting to new platforms.
|
---|
293 | However, it may also be able to better isolate user errors than just
|
---|
294 | using runtime checks. The assertions in the check routines spell
|
---|
295 | out in more detail the assumptions and invariants underlying the
|
---|
296 | algorithms. The checking is fairly extensive, and will slow down
|
---|
297 | execution noticeably. Calling malloc_stats or mallinfo with DEBUG
|
---|
298 | set will attempt to check every non-mmapped allocated and free chunk
|
---|
299 | in the course of computing the summaries.
|
---|
300 |
|
---|
301 | ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
|
---|
302 | Debugging assertion failures can be nearly impossible if your
|
---|
303 | version of the assert macro causes malloc to be called, which will
|
---|
304 | lead to a cascade of further failures, blowing the runtime stack.
|
---|
305 | ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
|
---|
306 | which will usually make debugging easier.
|
---|
307 |
|
---|
308 | MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
|
---|
309 | The action to take before "return 0" when malloc fails to be able to
|
---|
310 | return memory because there is none available.
|
---|
311 |
|
---|
312 | HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
|
---|
313 | True if this system supports sbrk or an emulation of it.
|
---|
314 |
|
---|
315 | MORECORE default: sbrk
|
---|
316 | The name of the sbrk-style system routine to call to obtain more
|
---|
317 | memory. See below for guidance on writing custom MORECORE
|
---|
318 | functions. The type of the argument to sbrk/MORECORE varies across
|
---|
319 | systems. It cannot be size_t, because it supports negative
|
---|
320 | arguments, so it is normally the signed type of the same width as
|
---|
321 | size_t (sometimes declared as "intptr_t"). It doesn't much matter
|
---|
322 | though. Internally, we only call it with arguments less than half
|
---|
323 | the max value of a size_t, which should work across all reasonable
|
---|
324 | possibilities, although sometimes generating compiler warnings. See
|
---|
325 | near the end of this file for guidelines for creating a custom
|
---|
326 | version of MORECORE.
|
---|
327 |
|
---|
328 | MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE
|
---|
329 | If true, take advantage of fact that consecutive calls to MORECORE
|
---|
330 | with positive arguments always return contiguous increasing
|
---|
331 | addresses. This is true of unix sbrk. It does not hurt too much to
|
---|
332 | set it true anyway, since malloc copes with non-contiguities.
|
---|
333 | Setting it false when definitely non-contiguous saves time
|
---|
334 | and possibly wasted space it would take to discover this though.
|
---|
335 |
|
---|
336 | MORECORE_CANNOT_TRIM default: NOT defined
|
---|
337 | True if MORECORE cannot release space back to the system when given
|
---|
338 | negative arguments. This is generally necessary only if you are
|
---|
339 | using a hand-crafted MORECORE function that cannot handle negative
|
---|
340 | arguments.
|
---|
341 |
|
---|
342 | NO_SEGMENT_TRAVERSAL default: 0
|
---|
343 | If non-zero, suppresses traversals of memory segments
|
---|
344 | returned by either MORECORE or CALL_MMAP. This disables
|
---|
345 | merging of segments that are contiguous, and selectively
|
---|
346 | releasing them to the OS if unused, but bounds execution times.
|
---|
347 |
|
---|
348 | HAVE_MMAP default: 1 (true)
|
---|
349 | True if this system supports mmap or an emulation of it. If so, and
|
---|
350 | HAVE_MORECORE is not true, MMAP is used for all system
|
---|
351 | allocation. If set and HAVE_MORECORE is true as well, MMAP is
|
---|
352 | primarily used to directly allocate very large blocks. It is also
|
---|
353 | used as a backup strategy in cases where MORECORE fails to provide
|
---|
354 | space from system. Note: A single call to MUNMAP is assumed to be
|
---|
355 | able to unmap memory that may have be allocated using multiple calls
|
---|
356 | to MMAP, so long as they are adjacent.
|
---|
357 |
|
---|
358 | HAVE_MREMAP default: 1 on linux, else 0
|
---|
359 | If true realloc() uses mremap() to re-allocate large blocks and
|
---|
360 | extend or shrink allocation spaces.
|
---|
361 |
|
---|
362 | MMAP_CLEARS default: 1 except on WINCE.
|
---|
363 | True if mmap clears memory so calloc doesn't need to. This is true
|
---|
364 | for standard unix mmap using /dev/zero and on WIN32 except for WINCE.
|
---|
365 |
|
---|
366 | USE_BUILTIN_FFS default: 0 (i.e., not used)
|
---|
367 | Causes malloc to use the builtin ffs() function to compute indices.
|
---|
368 | Some compilers may recognize and intrinsify ffs to be faster than the
|
---|
369 | supplied C version. Also, the case of x86 using gcc is special-cased
|
---|
370 | to an asm instruction, so is already as fast as it can be, and so
|
---|
371 | this setting has no effect. Similarly for Win32 under recent MS compilers.
|
---|
372 | (On most x86s, the asm version is only slightly faster than the C version.)
|
---|
373 |
|
---|
374 | malloc_getpagesize default: derive from system includes, or 4096.
|
---|
375 | The system page size. To the extent possible, this malloc manages
|
---|
376 | memory from the system in page-size units. This may be (and
|
---|
377 | usually is) a function rather than a constant. This is ignored
|
---|
378 | if WIN32, where page size is determined using getSystemInfo during
|
---|
379 | initialization.
|
---|
380 |
|
---|
381 | USE_DEV_RANDOM default: 0 (i.e., not used)
|
---|
382 | Causes malloc to use /dev/random to initialize secure magic seed for
|
---|
383 | stamping footers. Otherwise, the current time is used.
|
---|
384 |
|
---|
385 | NO_MALLINFO default: 0
|
---|
386 | If defined, don't compile "mallinfo". This can be a simple way
|
---|
387 | of dealing with mismatches between system declarations and
|
---|
388 | those in this file.
|
---|
389 |
|
---|
390 | MALLINFO_FIELD_TYPE default: size_t
|
---|
391 | The type of the fields in the mallinfo struct. This was originally
|
---|
392 | defined as "int" in SVID etc, but is more usefully defined as
|
---|
393 | size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
|
---|
394 |
|
---|
395 | REALLOC_ZERO_BYTES_FREES default: not defined
|
---|
396 | This should be set if a call to realloc with zero bytes should
|
---|
397 | be the same as a call to free. Some people think it should. Otherwise,
|
---|
398 | since this malloc returns a unique pointer for malloc(0), so does
|
---|
399 | realloc(p, 0).
|
---|
400 |
|
---|
401 | LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
|
---|
402 | LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
|
---|
403 | LACKS_STDLIB_H default: NOT defined unless on WIN32
|
---|
404 | Define these if your system does not have these header files.
|
---|
405 | You might need to manually insert some of the declarations they provide.
|
---|
406 |
|
---|
407 | DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
|
---|
408 | system_info.dwAllocationGranularity in WIN32,
|
---|
409 | otherwise 64K.
|
---|
410 | Also settable using mallopt(M_GRANULARITY, x)
|
---|
411 | The unit for allocating and deallocating memory from the system. On
|
---|
412 | most systems with contiguous MORECORE, there is no reason to
|
---|
413 | make this more than a page. However, systems with MMAP tend to
|
---|
414 | either require or encourage larger granularities. You can increase
|
---|
415 | this value to prevent system allocation functions to be called so
|
---|
416 | often, especially if they are slow. The value must be at least one
|
---|
417 | page and must be a power of two. Setting to 0 causes initialization
|
---|
418 | to either page size or win32 region size. (Note: In previous
|
---|
419 | versions of malloc, the equivalent of this option was called
|
---|
420 | "TOP_PAD")
|
---|
421 |
|
---|
422 | DEFAULT_TRIM_THRESHOLD default: 2MB
|
---|
423 | Also settable using mallopt(M_TRIM_THRESHOLD, x)
|
---|
424 | The maximum amount of unused top-most memory to keep before
|
---|
425 | releasing via malloc_trim in free(). Automatic trimming is mainly
|
---|
426 | useful in long-lived programs using contiguous MORECORE. Because
|
---|
427 | trimming via sbrk can be slow on some systems, and can sometimes be
|
---|
428 | wasteful (in cases where programs immediately afterward allocate
|
---|
429 | more large chunks) the value should be high enough so that your
|
---|
430 | overall system performance would improve by releasing this much
|
---|
431 | memory. As a rough guide, you might set to a value close to the
|
---|
432 | average size of a process (program) running on your system.
|
---|
433 | Releasing this much memory would allow such a process to run in
|
---|
434 | memory. Generally, it is worth tuning trim thresholds when a
|
---|
435 | program undergoes phases where several large chunks are allocated
|
---|
436 | and released in ways that can reuse each other's storage, perhaps
|
---|
437 | mixed with phases where there are no such chunks at all. The trim
|
---|
438 | value must be greater than page size to have any useful effect. To
|
---|
439 | disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
|
---|
440 | some people use of mallocing a huge space and then freeing it at
|
---|
441 | program startup, in an attempt to reserve system memory, doesn't
|
---|
442 | have the intended effect under automatic trimming, since that memory
|
---|
443 | will immediately be returned to the system.
|
---|
444 |
|
---|
445 | DEFAULT_MMAP_THRESHOLD default: 256K
|
---|
446 | Also settable using mallopt(M_MMAP_THRESHOLD, x)
|
---|
447 | The request size threshold for using MMAP to directly service a
|
---|
448 | request. Requests of at least this size that cannot be allocated
|
---|
449 | using already-existing space will be serviced via mmap. (If enough
|
---|
450 | normal freed space already exists it is used instead.) Using mmap
|
---|
451 | segregates relatively large chunks of memory so that they can be
|
---|
452 | individually obtained and released from the host system. A request
|
---|
453 | serviced through mmap is never reused by any other request (at least
|
---|
454 | not directly; the system may just so happen to remap successive
|
---|
455 | requests to the same locations). Segregating space in this way has
|
---|
456 | the benefits that: Mmapped space can always be individually released
|
---|
457 | back to the system, which helps keep the system level memory demands
|
---|
458 | of a long-lived program low. Also, mapped memory doesn't become
|
---|
459 | `locked' between other chunks, as can happen with normally allocated
|
---|
460 | chunks, which means that even trimming via malloc_trim would not
|
---|
461 | release them. However, it has the disadvantage that the space
|
---|
462 | cannot be reclaimed, consolidated, and then used to service later
|
---|
463 | requests, as happens with normal chunks. The advantages of mmap
|
---|
464 | nearly always outweigh disadvantages for "large" chunks, but the
|
---|
465 | value of "large" may vary across systems. The default is an
|
---|
466 | empirically derived value that works well in most systems. You can
|
---|
467 | disable mmap by setting to MAX_SIZE_T.
|
---|
468 |
|
---|
469 | MAX_RELEASE_CHECK_RATE default: 255 unless not HAVE_MMAP
|
---|
470 | The number of consolidated frees between checks to release
|
---|
471 | unused segments when freeing. When using non-contiguous segments,
|
---|
472 | especially with multiple mspaces, checking only for topmost space
|
---|
473 | doesn't always suffice to trigger trimming. To compensate for this,
|
---|
474 | free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
|
---|
475 | current number of segments, if greater) try to release unused
|
---|
476 | segments to the OS when freeing chunks that result in
|
---|
477 | consolidation. The best value for this parameter is a compromise
|
---|
478 | between slowing down frees with relatively costly checks that
|
---|
479 | rarely trigger versus holding on to unused memory. To effectively
|
---|
480 | disable, set to MAX_SIZE_T. This may lead to a very slight speed
|
---|
481 | improvement at the expense of carrying around more memory.
|
---|
482 | */
|
---|
483 |
|
---|
484 | #ifndef WIN32
|
---|
485 | #ifdef _WIN32
|
---|
486 | #define WIN32 1
|
---|
487 | #endif /* _WIN32 */
|
---|
488 | #endif /* WIN32 */
|
---|
489 | #ifdef WIN32
|
---|
490 | #define WIN32_LEAN_AND_MEAN
|
---|
491 | #include <windows.h>
|
---|
492 | #define HAVE_MMAP 1
|
---|
493 | #define HAVE_MORECORE 0
|
---|
494 | #define LACKS_UNISTD_H
|
---|
495 | #define LACKS_SYS_PARAM_H
|
---|
496 | #define LACKS_SYS_MMAN_H
|
---|
497 | #define LACKS_STRING_H
|
---|
498 | #define LACKS_STRINGS_H
|
---|
499 | #define LACKS_SYS_TYPES_H
|
---|
500 | #define LACKS_ERRNO_H
|
---|
501 | #define MALLOC_FAILURE_ACTION
|
---|
502 | #ifdef _WIN32_WCE /* WINCE reportedly does not clear */
|
---|
503 | #define MMAP_CLEARS 0
|
---|
504 | #else
|
---|
505 | #define MMAP_CLEARS 1
|
---|
506 | #endif /* _WIN32_WCE */
|
---|
507 | #endif /* WIN32 */
|
---|
508 |
|
---|
509 | #if defined(DARWIN) || defined(_DARWIN)
|
---|
510 | /* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
|
---|
511 | #ifndef HAVE_MORECORE
|
---|
512 | #define HAVE_MORECORE 0
|
---|
513 | #define HAVE_MMAP 1
|
---|
514 | #endif /* HAVE_MORECORE */
|
---|
515 | #endif /* DARWIN */
|
---|
516 |
|
---|
517 | #ifndef LACKS_SYS_TYPES_H
|
---|
518 | #include <sys/types.h> /* For size_t */
|
---|
519 | #endif /* LACKS_SYS_TYPES_H */
|
---|
520 |
|
---|
521 | /* The maximum possible size_t value has all bits set */
|
---|
522 | #define MAX_SIZE_T (~(size_t)0)
|
---|
523 |
|
---|
524 | #ifndef ONLY_MSPACES
|
---|
525 | #define ONLY_MSPACES 0
|
---|
526 | #endif /* ONLY_MSPACES */
|
---|
527 | #ifndef MSPACES
|
---|
528 | #if ONLY_MSPACES
|
---|
529 | #define MSPACES 1
|
---|
530 | #else /* ONLY_MSPACES */
|
---|
531 | #define MSPACES 0
|
---|
532 | #endif /* ONLY_MSPACES */
|
---|
533 | #endif /* MSPACES */
|
---|
534 | #ifndef MALLOC_ALIGNMENT
|
---|
535 | #define MALLOC_ALIGNMENT ((size_t)8U)
|
---|
536 | #endif /* MALLOC_ALIGNMENT */
|
---|
537 | #ifndef FOOTERS
|
---|
538 | #define FOOTERS 0
|
---|
539 | #endif /* FOOTERS */
|
---|
540 | #ifndef ABORT
|
---|
541 | #define ABORT abort()
|
---|
542 | #endif /* ABORT */
|
---|
543 | #ifndef ABORT_ON_ASSERT_FAILURE
|
---|
544 | #define ABORT_ON_ASSERT_FAILURE 1
|
---|
545 | #endif /* ABORT_ON_ASSERT_FAILURE */
|
---|
546 | #ifndef PROCEED_ON_ERROR
|
---|
547 | #define PROCEED_ON_ERROR 0
|
---|
548 | #endif /* PROCEED_ON_ERROR */
|
---|
549 | #ifndef USE_LOCKS
|
---|
550 | #define USE_LOCKS 0
|
---|
551 | #endif /* USE_LOCKS */
|
---|
552 | #ifndef USE_SPIN_LOCKS
|
---|
553 | #if USE_LOCKS && (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))) || (defined(_MSC_VER) && _MSC_VER>=1310)
|
---|
554 | #define USE_SPIN_LOCKS 1
|
---|
555 | #else
|
---|
556 | #define USE_SPIN_LOCKS 0
|
---|
557 | #endif /* USE_LOCKS && ... */
|
---|
558 | #endif /* USE_SPIN_LOCKS */
|
---|
559 | #ifndef INSECURE
|
---|
560 | #define INSECURE 0
|
---|
561 | #endif /* INSECURE */
|
---|
562 | #ifndef HAVE_MMAP
|
---|
563 | #define HAVE_MMAP 1
|
---|
564 | #endif /* HAVE_MMAP */
|
---|
565 | #ifndef MMAP_CLEARS
|
---|
566 | #define MMAP_CLEARS 1
|
---|
567 | #endif /* MMAP_CLEARS */
|
---|
568 | #ifndef HAVE_MREMAP
|
---|
569 | #ifdef linux
|
---|
570 | #define HAVE_MREMAP 1
|
---|
571 | #else /* linux */
|
---|
572 | #define HAVE_MREMAP 0
|
---|
573 | #endif /* linux */
|
---|
574 | #endif /* HAVE_MREMAP */
|
---|
575 | #ifndef MALLOC_FAILURE_ACTION
|
---|
576 | #define MALLOC_FAILURE_ACTION errno = ENOMEM;
|
---|
577 | #endif /* MALLOC_FAILURE_ACTION */
|
---|
578 | #ifndef HAVE_MORECORE
|
---|
579 | #if ONLY_MSPACES
|
---|
580 | #define HAVE_MORECORE 0
|
---|
581 | #else /* ONLY_MSPACES */
|
---|
582 | #define HAVE_MORECORE 1
|
---|
583 | #endif /* ONLY_MSPACES */
|
---|
584 | #endif /* HAVE_MORECORE */
|
---|
585 | #if !HAVE_MORECORE
|
---|
586 | #define MORECORE_CONTIGUOUS 0
|
---|
587 | #else /* !HAVE_MORECORE */
|
---|
588 | #ifndef MORECORE
|
---|
589 | #define MORECORE sbrk
|
---|
590 | #endif /* MORECORE */
|
---|
591 | #ifndef MORECORE_CONTIGUOUS
|
---|
592 | #define MORECORE_CONTIGUOUS 1
|
---|
593 | #endif /* MORECORE_CONTIGUOUS */
|
---|
594 | #endif /* HAVE_MORECORE */
|
---|
595 | #ifndef DEFAULT_GRANULARITY
|
---|
596 | #if MORECORE_CONTIGUOUS
|
---|
597 | #define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
|
---|
598 | #else /* MORECORE_CONTIGUOUS */
|
---|
599 | #define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
|
---|
600 | #endif /* MORECORE_CONTIGUOUS */
|
---|
601 | #endif /* DEFAULT_GRANULARITY */
|
---|
602 | #ifndef DEFAULT_TRIM_THRESHOLD
|
---|
603 | #ifndef MORECORE_CANNOT_TRIM
|
---|
604 | #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
|
---|
605 | #else /* MORECORE_CANNOT_TRIM */
|
---|
606 | #define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
|
---|
607 | #endif /* MORECORE_CANNOT_TRIM */
|
---|
608 | #endif /* DEFAULT_TRIM_THRESHOLD */
|
---|
609 | #ifndef DEFAULT_MMAP_THRESHOLD
|
---|
610 | #if HAVE_MMAP
|
---|
611 | #define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
|
---|
612 | #else /* HAVE_MMAP */
|
---|
613 | #define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
|
---|
614 | #endif /* HAVE_MMAP */
|
---|
615 | #endif /* DEFAULT_MMAP_THRESHOLD */
|
---|
616 | #ifndef MAX_RELEASE_CHECK_RATE
|
---|
617 | #if HAVE_MMAP
|
---|
618 | #define MAX_RELEASE_CHECK_RATE 255
|
---|
619 | #else
|
---|
620 | #define MAX_RELEASE_CHECK_RATE MAX_SIZE_T
|
---|
621 | #endif /* HAVE_MMAP */
|
---|
622 | #endif /* MAX_RELEASE_CHECK_RATE */
|
---|
623 | #ifndef USE_BUILTIN_FFS
|
---|
624 | #define USE_BUILTIN_FFS 0
|
---|
625 | #endif /* USE_BUILTIN_FFS */
|
---|
626 | #ifndef USE_DEV_RANDOM
|
---|
627 | #define USE_DEV_RANDOM 0
|
---|
628 | #endif /* USE_DEV_RANDOM */
|
---|
629 | #ifndef NO_MALLINFO
|
---|
630 | #define NO_MALLINFO 0
|
---|
631 | #endif /* NO_MALLINFO */
|
---|
632 | #ifndef MALLINFO_FIELD_TYPE
|
---|
633 | #define MALLINFO_FIELD_TYPE size_t
|
---|
634 | #endif /* MALLINFO_FIELD_TYPE */
|
---|
635 | #ifndef NO_SEGMENT_TRAVERSAL
|
---|
636 | #define NO_SEGMENT_TRAVERSAL 0
|
---|
637 | #endif /* NO_SEGMENT_TRAVERSAL */
|
---|
638 |
|
---|
639 | /*
|
---|
640 | mallopt tuning options. SVID/XPG defines four standard parameter
|
---|
641 | numbers for mallopt, normally defined in malloc.h. None of these
|
---|
642 | are used in this malloc, so setting them has no effect. But this
|
---|
643 | malloc does support the following options.
|
---|
644 | */
|
---|
645 |
|
---|
646 | #define M_TRIM_THRESHOLD (-1)
|
---|
647 | #define M_GRANULARITY (-2)
|
---|
648 | #define M_MMAP_THRESHOLD (-3)
|
---|
649 |
|
---|
650 | /* ------------------------ Mallinfo declarations ------------------------ */
|
---|
651 |
|
---|
652 | #if !NO_MALLINFO
|
---|
653 | /*
|
---|
654 | This version of malloc supports the standard SVID/XPG mallinfo
|
---|
655 | routine that returns a struct containing usage properties and
|
---|
656 | statistics. It should work on any system that has a
|
---|
657 | /usr/include/malloc.h defining struct mallinfo. The main
|
---|
658 | declaration needed is the mallinfo struct that is returned (by-copy)
|
---|
659 | by mallinfo(). The malloinfo struct contains a bunch of fields that
|
---|
660 | are not even meaningful in this version of malloc. These fields are
|
---|
661 | are instead filled by mallinfo() with other numbers that might be of
|
---|
662 | interest.
|
---|
663 |
|
---|
664 | HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
|
---|
665 | /usr/include/malloc.h file that includes a declaration of struct
|
---|
666 | mallinfo. If so, it is included; else a compliant version is
|
---|
667 | declared below. These must be precisely the same for mallinfo() to
|
---|
668 | work. The original SVID version of this struct, defined on most
|
---|
669 | systems with mallinfo, declares all fields as ints. But some others
|
---|
670 | define as unsigned long. If your system defines the fields using a
|
---|
671 | type of different width than listed here, you MUST #include your
|
---|
672 | system version and #define HAVE_USR_INCLUDE_MALLOC_H.
|
---|
673 | */
|
---|
674 |
|
---|
675 | /* #define HAVE_USR_INCLUDE_MALLOC_H */
|
---|
676 |
|
---|
677 | #ifdef HAVE_USR_INCLUDE_MALLOC_H
|
---|
678 | #include "/usr/include/malloc.h"
|
---|
679 | #else /* HAVE_USR_INCLUDE_MALLOC_H */
|
---|
680 |
|
---|
681 | struct mallinfo {
|
---|
682 | MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
|
---|
683 | MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
|
---|
684 | MALLINFO_FIELD_TYPE smblks; /* always 0 */
|
---|
685 | MALLINFO_FIELD_TYPE hblks; /* always 0 */
|
---|
686 | MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
|
---|
687 | MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
|
---|
688 | MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
|
---|
689 | MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
|
---|
690 | MALLINFO_FIELD_TYPE fordblks; /* total free space */
|
---|
691 | MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
|
---|
692 | };
|
---|
693 |
|
---|
694 | #endif /* HAVE_USR_INCLUDE_MALLOC_H */
|
---|
695 | #endif /* NO_MALLINFO */
|
---|
696 |
|
---|
697 | /*
|
---|
698 | Try to persuade compilers to inline. The most critical functions for
|
---|
699 | inlining are defined as macros, so these aren't used for them.
|
---|
700 | */
|
---|
701 |
|
---|
702 | #ifndef FORCEINLINE
|
---|
703 | #if defined(__GNUC__)
|
---|
704 | #define FORCEINLINE __inline __attribute__ ((always_inline))
|
---|
705 | #elif defined(_MSC_VER)
|
---|
706 | #define FORCEINLINE __forceinline
|
---|
707 | #endif
|
---|
708 | #endif
|
---|
709 | #ifndef NOINLINE
|
---|
710 | #if defined(__GNUC__)
|
---|
711 | #define NOINLINE __attribute__ ((noinline))
|
---|
712 | #elif defined(_MSC_VER)
|
---|
713 | #define NOINLINE __declspec(noinline)
|
---|
714 | #else
|
---|
715 | #define NOINLINE
|
---|
716 | #endif
|
---|
717 | #endif
|
---|
718 |
|
---|
719 | #ifdef __cplusplus
|
---|
720 | extern "C" {
|
---|
721 | #ifndef FORCEINLINE
|
---|
722 | #define FORCEINLINE inline
|
---|
723 | #endif
|
---|
724 | #endif /* __cplusplus */
|
---|
725 | #ifndef FORCEINLINE
|
---|
726 | #define FORCEINLINE
|
---|
727 | #endif
|
---|
728 |
|
---|
729 | #if !ONLY_MSPACES
|
---|
730 |
|
---|
731 | /* ------------------- Declarations of public routines ------------------- */
|
---|
732 |
|
---|
733 | #ifndef USE_DL_PREFIX
|
---|
734 | #define dlcalloc calloc
|
---|
735 | #define dlfree free
|
---|
736 | #define dlmalloc malloc
|
---|
737 | #define dlmemalign memalign
|
---|
738 | #define dlrealloc realloc
|
---|
739 | #define dlvalloc valloc
|
---|
740 | #define dlpvalloc pvalloc
|
---|
741 | #define dlmallinfo mallinfo
|
---|
742 | #define dlmallopt mallopt
|
---|
743 | #define dlmalloc_trim malloc_trim
|
---|
744 | #define dlmalloc_stats malloc_stats
|
---|
745 | #define dlmalloc_usable_size malloc_usable_size
|
---|
746 | #define dlmalloc_footprint malloc_footprint
|
---|
747 | #define dlmalloc_max_footprint malloc_max_footprint
|
---|
748 | #define dlindependent_calloc independent_calloc
|
---|
749 | #define dlindependent_comalloc independent_comalloc
|
---|
750 | #endif /* USE_DL_PREFIX */
|
---|
751 |
|
---|
752 |
|
---|
753 | /*
|
---|
754 | malloc(size_t n)
|
---|
755 | Returns a pointer to a newly allocated chunk of at least n bytes, or
|
---|
756 | null if no space is available, in which case errno is set to ENOMEM
|
---|
757 | on ANSI C systems.
|
---|
758 |
|
---|
759 | If n is zero, malloc returns a minimum-sized chunk. (The minimum
|
---|
760 | size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
|
---|
761 | systems.) Note that size_t is an unsigned type, so calls with
|
---|
762 | arguments that would be negative if signed are interpreted as
|
---|
763 | requests for huge amounts of space, which will often fail. The
|
---|
764 | maximum supported value of n differs across systems, but is in all
|
---|
765 | cases less than the maximum representable value of a size_t.
|
---|
766 | */
|
---|
767 | void* dlmalloc(size_t);
|
---|
768 |
|
---|
769 | /*
|
---|
770 | free(void* p)
|
---|
771 | Releases the chunk of memory pointed to by p, that had been previously
|
---|
772 | allocated using malloc or a related routine such as realloc.
|
---|
773 | It has no effect if p is null. If p was not malloced or already
|
---|
774 | freed, free(p) will by default cause the current program to abort.
|
---|
775 | */
|
---|
776 | void dlfree(void*);
|
---|
777 |
|
---|
778 | /*
|
---|
779 | calloc(size_t n_elements, size_t element_size);
|
---|
780 | Returns a pointer to n_elements * element_size bytes, with all locations
|
---|
781 | set to zero.
|
---|
782 | */
|
---|
783 | void* dlcalloc(size_t, size_t);
|
---|
784 |
|
---|
785 | /*
|
---|
786 | realloc(void* p, size_t n)
|
---|
787 | Returns a pointer to a chunk of size n that contains the same data
|
---|
788 | as does chunk p up to the minimum of (n, p's size) bytes, or null
|
---|
789 | if no space is available.
|
---|
790 |
|
---|
791 | The returned pointer may or may not be the same as p. The algorithm
|
---|
792 | prefers extending p in most cases when possible, otherwise it
|
---|
793 | employs the equivalent of a malloc-copy-free sequence.
|
---|
794 |
|
---|
795 | If p is null, realloc is equivalent to malloc.
|
---|
796 |
|
---|
797 | If space is not available, realloc returns null, errno is set (if on
|
---|
798 | ANSI) and p is NOT freed.
|
---|
799 |
|
---|
800 | if n is for fewer bytes than already held by p, the newly unused
|
---|
801 | space is lopped off and freed if possible. realloc with a size
|
---|
802 | argument of zero (re)allocates a minimum-sized chunk.
|
---|
803 |
|
---|
804 | The old unix realloc convention of allowing the last-free'd chunk
|
---|
805 | to be used as an argument to realloc is not supported.
|
---|
806 | */
|
---|
807 |
|
---|
808 | void* dlrealloc(void*, size_t);
|
---|
809 |
|
---|
810 | /*
|
---|
811 | memalign(size_t alignment, size_t n);
|
---|
812 | Returns a pointer to a newly allocated chunk of n bytes, aligned
|
---|
813 | in accord with the alignment argument.
|
---|
814 |
|
---|
815 | The alignment argument should be a power of two. If the argument is
|
---|
816 | not a power of two, the nearest greater power is used.
|
---|
817 | 8-byte alignment is guaranteed by normal malloc calls, so don't
|
---|
818 | bother calling memalign with an argument of 8 or less.
|
---|
819 |
|
---|
820 | Overreliance on memalign is a sure way to fragment space.
|
---|
821 | */
|
---|
822 | void* dlmemalign(size_t, size_t);
|
---|
823 |
|
---|
824 | /*
|
---|
825 | valloc(size_t n);
|
---|
826 | Equivalent to memalign(pagesize, n), where pagesize is the page
|
---|
827 | size of the system. If the pagesize is unknown, 4096 is used.
|
---|
828 | */
|
---|
829 | void* dlvalloc(size_t);
|
---|
830 |
|
---|
831 | /*
|
---|
832 | mallopt(int parameter_number, int parameter_value)
|
---|
833 | Sets tunable parameters The format is to provide a
|
---|
834 | (parameter-number, parameter-value) pair. mallopt then sets the
|
---|
835 | corresponding parameter to the argument value if it can (i.e., so
|
---|
836 | long as the value is meaningful), and returns 1 if successful else
|
---|
837 | 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
|
---|
838 | normally defined in malloc.h. None of these are use in this malloc,
|
---|
839 | so setting them has no effect. But this malloc also supports other
|
---|
840 | options in mallopt. See below for details. Briefly, supported
|
---|
841 | parameters are as follows (listed defaults are for "typical"
|
---|
842 | configurations).
|
---|
843 |
|
---|
844 | Symbol param # default allowed param values
|
---|
845 | M_TRIM_THRESHOLD -1 2*1024*1024 any (MAX_SIZE_T disables)
|
---|
846 | M_GRANULARITY -2 page size any power of 2 >= page size
|
---|
847 | M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
|
---|
848 | */
|
---|
849 | int dlmallopt(int, int);
|
---|
850 |
|
---|
851 | /*
|
---|
852 | malloc_footprint();
|
---|
853 | Returns the number of bytes obtained from the system. The total
|
---|
854 | number of bytes allocated by malloc, realloc etc., is less than this
|
---|
855 | value. Unlike mallinfo, this function returns only a precomputed
|
---|
856 | result, so can be called frequently to monitor memory consumption.
|
---|
857 | Even if locks are otherwise defined, this function does not use them,
|
---|
858 | so results might not be up to date.
|
---|
859 | */
|
---|
860 | size_t dlmalloc_footprint(void);
|
---|
861 |
|
---|
862 | /*
|
---|
863 | malloc_max_footprint();
|
---|
864 | Returns the maximum number of bytes obtained from the system. This
|
---|
865 | value will be greater than current footprint if deallocated space
|
---|
866 | has been reclaimed by the system. The peak number of bytes allocated
|
---|
867 | by malloc, realloc etc., is less than this value. Unlike mallinfo,
|
---|
868 | this function returns only a precomputed result, so can be called
|
---|
869 | frequently to monitor memory consumption. Even if locks are
|
---|
870 | otherwise defined, this function does not use them, so results might
|
---|
871 | not be up to date.
|
---|
872 | */
|
---|
873 | size_t dlmalloc_max_footprint(void);
|
---|
874 |
|
---|
875 | #if !NO_MALLINFO
|
---|
876 | /*
|
---|
877 | mallinfo()
|
---|
878 | Returns (by copy) a struct containing various summary statistics:
|
---|
879 |
|
---|
880 | arena: current total non-mmapped bytes allocated from system
|
---|
881 | ordblks: the number of free chunks
|
---|
882 | smblks: always zero.
|
---|
883 | hblks: current number of mmapped regions
|
---|
884 | hblkhd: total bytes held in mmapped regions
|
---|
885 | usmblks: the maximum total allocated space. This will be greater
|
---|
886 | than current total if trimming has occurred.
|
---|
887 | fsmblks: always zero
|
---|
888 | uordblks: current total allocated space (normal or mmapped)
|
---|
889 | fordblks: total free space
|
---|
890 | keepcost: the maximum number of bytes that could ideally be released
|
---|
891 | back to system via malloc_trim. ("ideally" means that
|
---|
892 | it ignores page restrictions etc.)
|
---|
893 |
|
---|
894 | Because these fields are ints, but internal bookkeeping may
|
---|
895 | be kept as longs, the reported values may wrap around zero and
|
---|
896 | thus be inaccurate.
|
---|
897 | */
|
---|
898 | struct mallinfo dlmallinfo(void);
|
---|
899 | #endif /* NO_MALLINFO */
|
---|
900 |
|
---|
901 | /*
|
---|
902 | independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
|
---|
903 |
|
---|
904 | independent_calloc is similar to calloc, but instead of returning a
|
---|
905 | single cleared space, it returns an array of pointers to n_elements
|
---|
906 | independent elements that can hold contents of size elem_size, each
|
---|
907 | of which starts out cleared, and can be independently freed,
|
---|
908 | realloc'ed etc. The elements are guaranteed to be adjacently
|
---|
909 | allocated (this is not guaranteed to occur with multiple callocs or
|
---|
910 | mallocs), which may also improve cache locality in some
|
---|
911 | applications.
|
---|
912 |
|
---|
913 | The "chunks" argument is optional (i.e., may be null, which is
|
---|
914 | probably the most typical usage). If it is null, the returned array
|
---|
915 | is itself dynamically allocated and should also be freed when it is
|
---|
916 | no longer needed. Otherwise, the chunks array must be of at least
|
---|
917 | n_elements in length. It is filled in with the pointers to the
|
---|
918 | chunks.
|
---|
919 |
|
---|
920 | In either case, independent_calloc returns this pointer array, or
|
---|
921 | null if the allocation failed. If n_elements is zero and "chunks"
|
---|
922 | is null, it returns a chunk representing an array with zero elements
|
---|
923 | (which should be freed if not wanted).
|
---|
924 |
|
---|
925 | Each element must be individually freed when it is no longer
|
---|
926 | needed. If you'd like to instead be able to free all at once, you
|
---|
927 | should instead use regular calloc and assign pointers into this
|
---|
928 | space to represent elements. (In this case though, you cannot
|
---|
929 | independently free elements.)
|
---|
930 |
|
---|
931 | independent_calloc simplifies and speeds up implementations of many
|
---|
932 | kinds of pools. It may also be useful when constructing large data
|
---|
933 | structures that initially have a fixed number of fixed-sized nodes,
|
---|
934 | but the number is not known at compile time, and some of the nodes
|
---|
935 | may later need to be freed. For example:
|
---|
936 |
|
---|
937 | struct Node { int item; struct Node* next; };
|
---|
938 |
|
---|
939 | struct Node* build_list() {
|
---|
940 | struct Node** pool;
|
---|
941 | int n = read_number_of_nodes_needed();
|
---|
942 | if (n <= 0) return 0;
|
---|
943 | pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
|
---|
944 | if (pool == 0) die();
|
---|
945 | // organize into a linked list...
|
---|
946 | struct Node* first = pool[0];
|
---|
947 | for (i = 0; i < n-1; ++i)
|
---|
948 | pool[i]->next = pool[i+1];
|
---|
949 | free(pool); // Can now free the array (or not, if it is needed later)
|
---|
950 | return first;
|
---|
951 | }
|
---|
952 | */
|
---|
953 | void** dlindependent_calloc(size_t, size_t, void**);
|
---|
954 |
|
---|
955 | /*
|
---|
956 | independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
|
---|
957 |
|
---|
958 | independent_comalloc allocates, all at once, a set of n_elements
|
---|
959 | chunks with sizes indicated in the "sizes" array. It returns
|
---|
960 | an array of pointers to these elements, each of which can be
|
---|
961 | independently freed, realloc'ed etc. The elements are guaranteed to
|
---|
962 | be adjacently allocated (this is not guaranteed to occur with
|
---|
963 | multiple callocs or mallocs), which may also improve cache locality
|
---|
964 | in some applications.
|
---|
965 |
|
---|
966 | The "chunks" argument is optional (i.e., may be null). If it is null
|
---|
967 | the returned array is itself dynamically allocated and should also
|
---|
968 | be freed when it is no longer needed. Otherwise, the chunks array
|
---|
969 | must be of at least n_elements in length. It is filled in with the
|
---|
970 | pointers to the chunks.
|
---|
971 |
|
---|
972 | In either case, independent_comalloc returns this pointer array, or
|
---|
973 | null if the allocation failed. If n_elements is zero and chunks is
|
---|
974 | null, it returns a chunk representing an array with zero elements
|
---|
975 | (which should be freed if not wanted).
|
---|
976 |
|
---|
977 | Each element must be individually freed when it is no longer
|
---|
978 | needed. If you'd like to instead be able to free all at once, you
|
---|
979 | should instead use a single regular malloc, and assign pointers at
|
---|
980 | particular offsets in the aggregate space. (In this case though, you
|
---|
981 | cannot independently free elements.)
|
---|
982 |
|
---|
983 | independent_comallac differs from independent_calloc in that each
|
---|
984 | element may have a different size, and also that it does not
|
---|
985 | automatically clear elements.
|
---|
986 |
|
---|
987 | independent_comalloc can be used to speed up allocation in cases
|
---|
988 | where several structs or objects must always be allocated at the
|
---|
989 | same time. For example:
|
---|
990 |
|
---|
991 | struct Head { ... }
|
---|
992 | struct Foot { ... }
|
---|
993 |
|
---|
994 | void send_message(char* msg) {
|
---|
995 | int msglen = strlen(msg);
|
---|
996 | size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
|
---|
997 | void* chunks[3];
|
---|
998 | if (independent_comalloc(3, sizes, chunks) == 0)
|
---|
999 | die();
|
---|
1000 | struct Head* head = (struct Head*)(chunks[0]);
|
---|
1001 | char* body = (char*)(chunks[1]);
|
---|
1002 | struct Foot* foot = (struct Foot*)(chunks[2]);
|
---|
1003 | // ...
|
---|
1004 | }
|
---|
1005 |
|
---|
1006 | In general though, independent_comalloc is worth using only for
|
---|
1007 | larger values of n_elements. For small values, you probably won't
|
---|
1008 | detect enough difference from series of malloc calls to bother.
|
---|
1009 |
|
---|
1010 | Overuse of independent_comalloc can increase overall memory usage,
|
---|
1011 | since it cannot reuse existing noncontiguous small chunks that
|
---|
1012 | might be available for some of the elements.
|
---|
1013 | */
|
---|
1014 | void** dlindependent_comalloc(size_t, size_t*, void**);
|
---|
1015 |
|
---|
1016 |
|
---|
1017 | /*
|
---|
1018 | pvalloc(size_t n);
|
---|
1019 | Equivalent to valloc(minimum-page-that-holds(n)), that is,
|
---|
1020 | round up n to nearest pagesize.
|
---|
1021 | */
|
---|
1022 | void* dlpvalloc(size_t);
|
---|
1023 |
|
---|
1024 | /*
|
---|
1025 | malloc_trim(size_t pad);
|
---|
1026 |
|
---|
1027 | If possible, gives memory back to the system (via negative arguments
|
---|
1028 | to sbrk) if there is unused memory at the `high' end of the malloc
|
---|
1029 | pool or in unused MMAP segments. You can call this after freeing
|
---|
1030 | large blocks of memory to potentially reduce the system-level memory
|
---|
1031 | requirements of a program. However, it cannot guarantee to reduce
|
---|
1032 | memory. Under some allocation patterns, some large free blocks of
|
---|
1033 | memory will be locked between two used chunks, so they cannot be
|
---|
1034 | given back to the system.
|
---|
1035 |
|
---|
1036 | The `pad' argument to malloc_trim represents the amount of free
|
---|
1037 | trailing space to leave untrimmed. If this argument is zero, only
|
---|
1038 | the minimum amount of memory to maintain internal data structures
|
---|
1039 | will be left. Non-zero arguments can be supplied to maintain enough
|
---|
1040 | trailing space to service future expected allocations without having
|
---|
1041 | to re-obtain memory from the system.
|
---|
1042 |
|
---|
1043 | Malloc_trim returns 1 if it actually released any memory, else 0.
|
---|
1044 | */
|
---|
1045 | int dlmalloc_trim(size_t);
|
---|
1046 |
|
---|
1047 | /*
|
---|
1048 | malloc_usable_size(void* p);
|
---|
1049 |
|
---|
1050 | Returns the number of bytes you can actually use in
|
---|
1051 | an allocated chunk, which may be more than you requested (although
|
---|
1052 | often not) due to alignment and minimum size constraints.
|
---|
1053 | You can use this many bytes without worrying about
|
---|
1054 | overwriting other allocated objects. This is not a particularly great
|
---|
1055 | programming practice. malloc_usable_size can be more useful in
|
---|
1056 | debugging and assertions, for example:
|
---|
1057 |
|
---|
1058 | p = malloc(n);
|
---|
1059 | assert(malloc_usable_size(p) >= 256);
|
---|
1060 | */
|
---|
1061 | size_t dlmalloc_usable_size(void*);
|
---|
1062 |
|
---|
1063 | /*
|
---|
1064 | malloc_stats();
|
---|
1065 | Prints on stderr the amount of space obtained from the system (both
|
---|
1066 | via sbrk and mmap), the maximum amount (which may be more than
|
---|
1067 | current if malloc_trim and/or munmap got called), and the current
|
---|
1068 | number of bytes allocated via malloc (or realloc, etc) but not yet
|
---|
1069 | freed. Note that this is the number of bytes allocated, not the
|
---|
1070 | number requested. It will be larger than the number requested
|
---|
1071 | because of alignment and bookkeeping overhead. Because it includes
|
---|
1072 | alignment wastage as being in use, this figure may be greater than
|
---|
1073 | zero even when no user-level chunks are allocated.
|
---|
1074 |
|
---|
1075 | The reported current and maximum system memory can be inaccurate if
|
---|
1076 | a program makes other calls to system memory allocation functions
|
---|
1077 | (normally sbrk) outside of malloc.
|
---|
1078 |
|
---|
1079 | malloc_stats prints only the most commonly interesting statistics.
|
---|
1080 | More information can be obtained by calling mallinfo.
|
---|
1081 | */
|
---|
1082 | void dlmalloc_stats(void);
|
---|
1083 |
|
---|
1084 | #endif /* ONLY_MSPACES */
|
---|
1085 |
|
---|
1086 | #if MSPACES
|
---|
1087 |
|
---|
1088 | /*
|
---|
1089 | mspace is an opaque type representing an independent
|
---|
1090 | region of space that supports mspace_malloc, etc.
|
---|
1091 | */
|
---|
1092 | typedef void* mspace;
|
---|
1093 |
|
---|
1094 | /*
|
---|
1095 | create_mspace creates and returns a new independent space with the
|
---|
1096 | given initial capacity, or, if 0, the default granularity size. It
|
---|
1097 | returns null if there is no system memory available to create the
|
---|
1098 | space. If argument locked is non-zero, the space uses a separate
|
---|
1099 | lock to control access. The capacity of the space will grow
|
---|
1100 | dynamically as needed to service mspace_malloc requests. You can
|
---|
1101 | control the sizes of incremental increases of this space by
|
---|
1102 | compiling with a different DEFAULT_GRANULARITY or dynamically
|
---|
1103 | setting with mallopt(M_GRANULARITY, value).
|
---|
1104 | */
|
---|
1105 | mspace create_mspace(size_t capacity, int locked);
|
---|
1106 |
|
---|
1107 | /*
|
---|
1108 | destroy_mspace destroys the given space, and attempts to return all
|
---|
1109 | of its memory back to the system, returning the total number of
|
---|
1110 | bytes freed. After destruction, the results of access to all memory
|
---|
1111 | used by the space become undefined.
|
---|
1112 | */
|
---|
1113 | size_t destroy_mspace(mspace msp);
|
---|
1114 |
|
---|
1115 | /*
|
---|
1116 | create_mspace_with_base uses the memory supplied as the initial base
|
---|
1117 | of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
|
---|
1118 | space is used for bookkeeping, so the capacity must be at least this
|
---|
1119 | large. (Otherwise 0 is returned.) When this initial space is
|
---|
1120 | exhausted, additional memory will be obtained from the system.
|
---|
1121 | Destroying this space will deallocate all additionally allocated
|
---|
1122 | space (if possible) but not the initial base.
|
---|
1123 | */
|
---|
1124 | mspace create_mspace_with_base(void* base, size_t capacity, int locked);
|
---|
1125 |
|
---|
1126 | /*
|
---|
1127 | mspace_malloc behaves as malloc, but operates within
|
---|
1128 | the given space.
|
---|
1129 | */
|
---|
1130 | void* mspace_malloc(mspace msp, size_t bytes);
|
---|
1131 |
|
---|
1132 | /*
|
---|
1133 | mspace_free behaves as free, but operates within
|
---|
1134 | the given space.
|
---|
1135 |
|
---|
1136 | If compiled with FOOTERS==1, mspace_free is not actually needed.
|
---|
1137 | free may be called instead of mspace_free because freed chunks from
|
---|
1138 | any space are handled by their originating spaces.
|
---|
1139 | */
|
---|
1140 | void mspace_free(mspace msp, void* mem);
|
---|
1141 |
|
---|
1142 | /*
|
---|
1143 | mspace_realloc behaves as realloc, but operates within
|
---|
1144 | the given space.
|
---|
1145 |
|
---|
1146 | If compiled with FOOTERS==1, mspace_realloc is not actually
|
---|
1147 | needed. realloc may be called instead of mspace_realloc because
|
---|
1148 | realloced chunks from any space are handled by their originating
|
---|
1149 | spaces.
|
---|
1150 | */
|
---|
1151 | void* mspace_realloc(mspace msp, void* mem, size_t newsize);
|
---|
1152 |
|
---|
1153 | /*
|
---|
1154 | mspace_calloc behaves as calloc, but operates within
|
---|
1155 | the given space.
|
---|
1156 | */
|
---|
1157 | void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
|
---|
1158 |
|
---|
1159 | /*
|
---|
1160 | mspace_memalign behaves as memalign, but operates within
|
---|
1161 | the given space.
|
---|
1162 | */
|
---|
1163 | void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
|
---|
1164 |
|
---|
1165 | /*
|
---|
1166 | mspace_independent_calloc behaves as independent_calloc, but
|
---|
1167 | operates within the given space.
|
---|
1168 | */
|
---|
1169 | void** mspace_independent_calloc(mspace msp, size_t n_elements,
|
---|
1170 | size_t elem_size, void* chunks[]);
|
---|
1171 |
|
---|
1172 | /*
|
---|
1173 | mspace_independent_comalloc behaves as independent_comalloc, but
|
---|
1174 | operates within the given space.
|
---|
1175 | */
|
---|
1176 | void** mspace_independent_comalloc(mspace msp, size_t n_elements,
|
---|
1177 | size_t sizes[], void* chunks[]);
|
---|
1178 |
|
---|
1179 | /*
|
---|
1180 | mspace_footprint() returns the number of bytes obtained from the
|
---|
1181 | system for this space.
|
---|
1182 | */
|
---|
1183 | size_t mspace_footprint(mspace msp);
|
---|
1184 |
|
---|
1185 | /*
|
---|
1186 | mspace_max_footprint() returns the peak number of bytes obtained from the
|
---|
1187 | system for this space.
|
---|
1188 | */
|
---|
1189 | size_t mspace_max_footprint(mspace msp);
|
---|
1190 |
|
---|
1191 |
|
---|
1192 | #if !NO_MALLINFO
|
---|
1193 | /*
|
---|
1194 | mspace_mallinfo behaves as mallinfo, but reports properties of
|
---|
1195 | the given space.
|
---|
1196 | */
|
---|
1197 | struct mallinfo mspace_mallinfo(mspace msp);
|
---|
1198 | #endif /* NO_MALLINFO */
|
---|
1199 |
|
---|
1200 | /*
|
---|
1201 | mspace_malloc_stats behaves as malloc_stats, but reports
|
---|
1202 | properties of the given space.
|
---|
1203 | */
|
---|
1204 | void mspace_malloc_stats(mspace msp);
|
---|
1205 |
|
---|
1206 | /*
|
---|
1207 | mspace_trim behaves as malloc_trim, but
|
---|
1208 | operates within the given space.
|
---|
1209 | */
|
---|
1210 | int mspace_trim(mspace msp, size_t pad);
|
---|
1211 |
|
---|
1212 | /*
|
---|
1213 | An alias for mallopt.
|
---|
1214 | */
|
---|
1215 | int mspace_mallopt(int, int);
|
---|
1216 |
|
---|
1217 | #endif /* MSPACES */
|
---|
1218 |
|
---|
1219 | #ifdef __cplusplus
|
---|
1220 | }; /* end of extern "C" */
|
---|
1221 | #endif /* __cplusplus */
|
---|
1222 |
|
---|
1223 | /*
|
---|
1224 | ========================================================================
|
---|
1225 | To make a fully customizable malloc.h header file, cut everything
|
---|
1226 | above this line, put into file malloc.h, edit to suit, and #include it
|
---|
1227 | on the next line, as well as in programs that use this malloc.
|
---|
1228 | ========================================================================
|
---|
1229 | */
|
---|
1230 |
|
---|
1231 | /* #include "malloc.h" */
|
---|
1232 |
|
---|
1233 | /*------------------------------ internal #includes ---------------------- */
|
---|
1234 |
|
---|
1235 | #ifdef WIN32
|
---|
1236 | #pragma warning( disable : 4146 ) /* no "unsigned" warnings */
|
---|
1237 | #endif /* WIN32 */
|
---|
1238 |
|
---|
1239 | #include <stdio.h> /* for printing in malloc_stats */
|
---|
1240 |
|
---|
1241 | #ifndef LACKS_ERRNO_H
|
---|
1242 | #include <errno.h> /* for MALLOC_FAILURE_ACTION */
|
---|
1243 | #endif /* LACKS_ERRNO_H */
|
---|
1244 | #if FOOTERS
|
---|
1245 | #include <time.h> /* for magic initialization */
|
---|
1246 | #endif /* FOOTERS */
|
---|
1247 | #ifndef LACKS_STDLIB_H
|
---|
1248 | #include <stdlib.h> /* for abort() */
|
---|
1249 | #endif /* LACKS_STDLIB_H */
|
---|
1250 | #ifdef DEBUG
|
---|
1251 | #if ABORT_ON_ASSERT_FAILURE
|
---|
1252 | #define assert(x) if(!(x)) ABORT
|
---|
1253 | #else /* ABORT_ON_ASSERT_FAILURE */
|
---|
1254 | #include <assert.h>
|
---|
1255 | #endif /* ABORT_ON_ASSERT_FAILURE */
|
---|
1256 | #else /* DEBUG */
|
---|
1257 | #define assert(x)
|
---|
1258 | #endif /* DEBUG */
|
---|
1259 | #ifndef LACKS_STRING_H
|
---|
1260 | #include <string.h> /* for memset etc */
|
---|
1261 | #endif /* LACKS_STRING_H */
|
---|
1262 | #if USE_BUILTIN_FFS
|
---|
1263 | #ifndef LACKS_STRINGS_H
|
---|
1264 | #include <strings.h> /* for ffs */
|
---|
1265 | #endif /* LACKS_STRINGS_H */
|
---|
1266 | #endif /* USE_BUILTIN_FFS */
|
---|
1267 | #if HAVE_MMAP
|
---|
1268 | #ifndef LACKS_SYS_MMAN_H
|
---|
1269 | #include <sys/mman.h> /* for mmap */
|
---|
1270 | #endif /* LACKS_SYS_MMAN_H */
|
---|
1271 | #ifndef LACKS_FCNTL_H
|
---|
1272 | #include <fcntl.h>
|
---|
1273 | #endif /* LACKS_FCNTL_H */
|
---|
1274 | #endif /* HAVE_MMAP */
|
---|
1275 | #if HAVE_MORECORE
|
---|
1276 | #ifndef LACKS_UNISTD_H
|
---|
1277 | #include <unistd.h> /* for sbrk */
|
---|
1278 | #else /* LACKS_UNISTD_H */
|
---|
1279 | #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
|
---|
1280 | extern void* sbrk(ptrdiff_t);
|
---|
1281 | #endif /* FreeBSD etc */
|
---|
1282 | #endif /* LACKS_UNISTD_H */
|
---|
1283 | #endif /* HAVE_MMAP */
|
---|
1284 |
|
---|
1285 | /* Declarations for locking */
|
---|
1286 | #if USE_LOCKS
|
---|
1287 | #ifndef WIN32
|
---|
1288 | #include <pthread.h>
|
---|
1289 | #if defined (__SVR4) && defined (__sun) /* solaris */
|
---|
1290 | #include <thread.h>
|
---|
1291 | #endif /* solaris */
|
---|
1292 | #else
|
---|
1293 | #ifndef _M_AMD64
|
---|
1294 | /* These are already defined on AMD64 builds */
|
---|
1295 | #ifdef __cplusplus
|
---|
1296 | extern "C" {
|
---|
1297 | #endif /* __cplusplus */
|
---|
1298 | LONG __cdecl _InterlockedCompareExchange(LPLONG volatile Dest, LONG Exchange, LONG Comp);
|
---|
1299 | LONG __cdecl _InterlockedExchange(LPLONG volatile Target, LONG Value);
|
---|
1300 | #ifdef __cplusplus
|
---|
1301 | }
|
---|
1302 | #endif /* __cplusplus */
|
---|
1303 | #endif /* _M_AMD64 */
|
---|
1304 | #pragma intrinsic (_InterlockedCompareExchange)
|
---|
1305 | #pragma intrinsic (_InterlockedExchange)
|
---|
1306 | #define interlockedcompareexchange _InterlockedCompareExchange
|
---|
1307 | #define interlockedexchange _InterlockedExchange
|
---|
1308 | #endif /* Win32 */
|
---|
1309 | #endif /* USE_LOCKS */
|
---|
1310 |
|
---|
1311 | /* Declarations for bit scanning on win32 */
|
---|
1312 | #if defined(_MSC_VER) && _MSC_VER>=1300
|
---|
1313 | #ifndef BitScanForward /* Try to avoid pulling in WinNT.h */
|
---|
1314 | #ifdef __cplusplus
|
---|
1315 | extern "C" {
|
---|
1316 | #endif /* __cplusplus */
|
---|
1317 | unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
|
---|
1318 | unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
|
---|
1319 | #ifdef __cplusplus
|
---|
1320 | }
|
---|
1321 | #endif /* __cplusplus */
|
---|
1322 |
|
---|
1323 | #define BitScanForward _BitScanForward
|
---|
1324 | #define BitScanReverse _BitScanReverse
|
---|
1325 | #pragma intrinsic(_BitScanForward)
|
---|
1326 | #pragma intrinsic(_BitScanReverse)
|
---|
1327 | #endif /* BitScanForward */
|
---|
1328 | #endif /* defined(_MSC_VER) && _MSC_VER>=1300 */
|
---|
1329 |
|
---|
1330 | #ifndef WIN32
|
---|
1331 | #ifndef malloc_getpagesize
|
---|
1332 | # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
|
---|
1333 | # ifndef _SC_PAGE_SIZE
|
---|
1334 | # define _SC_PAGE_SIZE _SC_PAGESIZE
|
---|
1335 | # endif
|
---|
1336 | # endif
|
---|
1337 | # ifdef _SC_PAGE_SIZE
|
---|
1338 | # define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
|
---|
1339 | # else
|
---|
1340 | # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
|
---|
1341 | extern size_t getpagesize();
|
---|
1342 | # define malloc_getpagesize getpagesize()
|
---|
1343 | # else
|
---|
1344 | # ifdef WIN32 /* use supplied emulation of getpagesize */
|
---|
1345 | # define malloc_getpagesize getpagesize()
|
---|
1346 | # else
|
---|
1347 | # ifndef LACKS_SYS_PARAM_H
|
---|
1348 | # include <sys/param.h>
|
---|
1349 | # endif
|
---|
1350 | # ifdef EXEC_PAGESIZE
|
---|
1351 | # define malloc_getpagesize EXEC_PAGESIZE
|
---|
1352 | # else
|
---|
1353 | # ifdef NBPG
|
---|
1354 | # ifndef CLSIZE
|
---|
1355 | # define malloc_getpagesize NBPG
|
---|
1356 | # else
|
---|
1357 | # define malloc_getpagesize (NBPG * CLSIZE)
|
---|
1358 | # endif
|
---|
1359 | # else
|
---|
1360 | # ifdef NBPC
|
---|
1361 | # define malloc_getpagesize NBPC
|
---|
1362 | # else
|
---|
1363 | # ifdef PAGESIZE
|
---|
1364 | # define malloc_getpagesize PAGESIZE
|
---|
1365 | # else /* just guess */
|
---|
1366 | # define malloc_getpagesize ((size_t)4096U)
|
---|
1367 | # endif
|
---|
1368 | # endif
|
---|
1369 | # endif
|
---|
1370 | # endif
|
---|
1371 | # endif
|
---|
1372 | # endif
|
---|
1373 | # endif
|
---|
1374 | #endif
|
---|
1375 | #endif
|
---|
1376 |
|
---|
1377 |
|
---|
1378 |
|
---|
1379 | /* ------------------- size_t and alignment properties -------------------- */
|
---|
1380 |
|
---|
1381 | /* The byte and bit size of a size_t */
|
---|
1382 | #define SIZE_T_SIZE (sizeof(size_t))
|
---|
1383 | #define SIZE_T_BITSIZE (sizeof(size_t) << 3)
|
---|
1384 |
|
---|
1385 | /* Some constants coerced to size_t */
|
---|
1386 | /* Annoying but necessary to avoid errors on some platforms */
|
---|
1387 | #define SIZE_T_ZERO ((size_t)0)
|
---|
1388 | #define SIZE_T_ONE ((size_t)1)
|
---|
1389 | #define SIZE_T_TWO ((size_t)2)
|
---|
1390 | #define SIZE_T_FOUR ((size_t)4)
|
---|
1391 | #define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
|
---|
1392 | #define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
|
---|
1393 | #define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
|
---|
1394 | #define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
|
---|
1395 |
|
---|
1396 | /* The bit mask value corresponding to MALLOC_ALIGNMENT */
|
---|
1397 | #define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
|
---|
1398 |
|
---|
1399 | /* True if address a has acceptable alignment */
|
---|
1400 | #define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
|
---|
1401 |
|
---|
1402 | /* the number of bytes to offset an address to align it */
|
---|
1403 | #define align_offset(A)\
|
---|
1404 | ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
|
---|
1405 | ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
|
---|
1406 |
|
---|
1407 | /* -------------------------- MMAP preliminaries ------------------------- */
|
---|
1408 |
|
---|
1409 | /*
|
---|
1410 | If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
|
---|
1411 | checks to fail so compiler optimizer can delete code rather than
|
---|
1412 | using so many "#if"s.
|
---|
1413 | */
|
---|
1414 |
|
---|
1415 |
|
---|
1416 | /* MORECORE and MMAP must return MFAIL on failure */
|
---|
1417 | #define MFAIL ((void*)(MAX_SIZE_T))
|
---|
1418 | #define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
|
---|
1419 |
|
---|
1420 | #if !HAVE_MMAP
|
---|
1421 | #define IS_MMAPPED_BIT (SIZE_T_ZERO)
|
---|
1422 | #define USE_MMAP_BIT (SIZE_T_ZERO)
|
---|
1423 | #define CALL_MMAP(s) MFAIL
|
---|
1424 | #define CALL_MUNMAP(a, s) (-1)
|
---|
1425 | #define DIRECT_MMAP(s) MFAIL
|
---|
1426 |
|
---|
1427 | #else /* HAVE_MMAP */
|
---|
1428 | #define IS_MMAPPED_BIT (SIZE_T_ONE)
|
---|
1429 | #define USE_MMAP_BIT (SIZE_T_ONE)
|
---|
1430 |
|
---|
1431 | #ifndef WIN32
|
---|
1432 | #define CALL_MUNMAP(a, s) munmap((a), (s))
|
---|
1433 | #define MMAP_PROT (PROT_READ|PROT_WRITE)
|
---|
1434 | #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
|
---|
1435 | #define MAP_ANONYMOUS MAP_ANON
|
---|
1436 | #endif /* MAP_ANON */
|
---|
1437 | #ifdef MAP_ANONYMOUS
|
---|
1438 | #define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
|
---|
1439 | #define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
|
---|
1440 | #else /* MAP_ANONYMOUS */
|
---|
1441 | /*
|
---|
1442 | Nearly all versions of mmap support MAP_ANONYMOUS, so the following
|
---|
1443 | is unlikely to be needed, but is supplied just in case.
|
---|
1444 | */
|
---|
1445 | #define MMAP_FLAGS (MAP_PRIVATE)
|
---|
1446 | static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
|
---|
1447 | #define CALL_MMAP(s) ((dev_zero_fd < 0) ? \
|
---|
1448 | (dev_zero_fd = open("/dev/zero", O_RDWR), \
|
---|
1449 | mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
|
---|
1450 | mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
|
---|
1451 | #endif /* MAP_ANONYMOUS */
|
---|
1452 |
|
---|
1453 | #define DIRECT_MMAP(s) CALL_MMAP(s)
|
---|
1454 | #else /* WIN32 */
|
---|
1455 |
|
---|
1456 | /* Win32 MMAP via VirtualAlloc */
|
---|
1457 | static FORCEINLINE void* win32mmap(size_t size) {
|
---|
1458 | void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
|
---|
1459 | return (ptr != 0)? ptr: MFAIL;
|
---|
1460 | }
|
---|
1461 |
|
---|
1462 | /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
|
---|
1463 | static FORCEINLINE void* win32direct_mmap(size_t size) {
|
---|
1464 | void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
|
---|
1465 | PAGE_READWRITE);
|
---|
1466 | return (ptr != 0)? ptr: MFAIL;
|
---|
1467 | }
|
---|
1468 |
|
---|
1469 | /* This function supports releasing coalesed segments */
|
---|
1470 | static FORCEINLINE int win32munmap(void* ptr, size_t size) {
|
---|
1471 | MEMORY_BASIC_INFORMATION minfo;
|
---|
1472 | char* cptr = (char*)ptr;
|
---|
1473 | while (size) {
|
---|
1474 | if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
|
---|
1475 | return -1;
|
---|
1476 | if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
|
---|
1477 | minfo.State != MEM_COMMIT || minfo.RegionSize > size)
|
---|
1478 | return -1;
|
---|
1479 | if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
|
---|
1480 | return -1;
|
---|
1481 | cptr += minfo.RegionSize;
|
---|
1482 | size -= minfo.RegionSize;
|
---|
1483 | }
|
---|
1484 | return 0;
|
---|
1485 | }
|
---|
1486 |
|
---|
1487 | #define CALL_MMAP(s) win32mmap(s)
|
---|
1488 | #define CALL_MUNMAP(a, s) win32munmap((a), (s))
|
---|
1489 | #define DIRECT_MMAP(s) win32direct_mmap(s)
|
---|
1490 | #endif /* WIN32 */
|
---|
1491 | #endif /* HAVE_MMAP */
|
---|
1492 |
|
---|
1493 | #if HAVE_MMAP && HAVE_MREMAP
|
---|
1494 | #define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
|
---|
1495 | #else /* HAVE_MMAP && HAVE_MREMAP */
|
---|
1496 | #define CALL_MREMAP(addr, osz, nsz, mv) ((void)(addr),(void)(osz), \
|
---|
1497 | (void)(nsz), (void)(mv),MFAIL)
|
---|
1498 | #endif /* HAVE_MMAP && HAVE_MREMAP */
|
---|
1499 |
|
---|
1500 | #if HAVE_MORECORE
|
---|
1501 | #define CALL_MORECORE(S) MORECORE(S)
|
---|
1502 | #else /* HAVE_MORECORE */
|
---|
1503 | #define CALL_MORECORE(S) MFAIL
|
---|
1504 | #endif /* HAVE_MORECORE */
|
---|
1505 |
|
---|
1506 | /* mstate bit set if continguous morecore disabled or failed */
|
---|
1507 | #define USE_NONCONTIGUOUS_BIT (4U)
|
---|
1508 |
|
---|
1509 | /* segment bit set in create_mspace_with_base */
|
---|
1510 | #define EXTERN_BIT (8U)
|
---|
1511 |
|
---|
1512 |
|
---|
1513 | /* --------------------------- Lock preliminaries ------------------------ */
|
---|
1514 |
|
---|
1515 | /*
|
---|
1516 | When locks are defined, there are up to two global locks:
|
---|
1517 |
|
---|
1518 | * If HAVE_MORECORE, morecore_mutex protects sequences of calls to
|
---|
1519 | MORECORE. In many cases sys_alloc requires two calls, that should
|
---|
1520 | not be interleaved with calls by other threads. This does not
|
---|
1521 | protect against direct calls to MORECORE by other threads not
|
---|
1522 | using this lock, so there is still code to cope the best we can on
|
---|
1523 | interference.
|
---|
1524 |
|
---|
1525 | * magic_init_mutex ensures that mparams.magic and other
|
---|
1526 | unique mparams values are initialized only once.
|
---|
1527 |
|
---|
1528 | To enable use in layered extensions, locks are reentrant.
|
---|
1529 |
|
---|
1530 | Because lock-protected regions generally have bounded times, we use
|
---|
1531 | the supplied simple spinlocks in the custom versions for x86.
|
---|
1532 |
|
---|
1533 | If USE_LOCKS is > 1, the definitions of lock routines here are
|
---|
1534 | bypassed, in which case you will need to define at least
|
---|
1535 | INITIAL_LOCK, ACQUIRE_LOCK, RELEASE_LOCK, and
|
---|
1536 | NULL_LOCK_INITIALIZER, and possibly TRY_LOCK and IS_LOCKED
|
---|
1537 | (The latter two are not used in this malloc, but are
|
---|
1538 | commonly needed in extensions.)
|
---|
1539 | */
|
---|
1540 |
|
---|
1541 | #if USE_LOCKS == 1
|
---|
1542 |
|
---|
1543 | #if USE_SPIN_LOCKS
|
---|
1544 | #ifndef WIN32
|
---|
1545 | /* Custom pthread-style spin locks on x86 and x64 for gcc */
|
---|
1546 | struct pthread_mlock_t
|
---|
1547 | {
|
---|
1548 | volatile pthread_t threadid;
|
---|
1549 | volatile unsigned int c;
|
---|
1550 | volatile unsigned int l;
|
---|
1551 | };
|
---|
1552 | #define MLOCK_T struct pthread_mlock_t
|
---|
1553 | #define CURRENT_THREAD pthread_self()
|
---|
1554 | #define SPINS_PER_YIELD 63
|
---|
1555 | static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) {
|
---|
1556 | if(CURRENT_THREAD==sl->threadid)
|
---|
1557 | ++sl->c;
|
---|
1558 | else {
|
---|
1559 | int spins = 0;
|
---|
1560 | for (;;) {
|
---|
1561 | int ret;
|
---|
1562 | __asm__ __volatile__ ("lock cmpxchgl %2,(%1)" : "=a" (ret) : "r" (&sl->l), "r" (1), "a" (0));
|
---|
1563 | if(!ret) {
|
---|
1564 | assert(!sl->threadid);
|
---|
1565 | sl->threadid=CURRENT_THREAD;
|
---|
1566 | sl->c=1;
|
---|
1567 | break;
|
---|
1568 | }
|
---|
1569 | if ((++spins & SPINS_PER_YIELD) == 0) {
|
---|
1570 | #if defined (__SVR4) && defined (__sun) /* solaris */
|
---|
1571 | thr_yield();
|
---|
1572 | #else
|
---|
1573 | #ifdef linux
|
---|
1574 | sched_yield();
|
---|
1575 | #else /* no-op yield on unknown systems */
|
---|
1576 | ;
|
---|
1577 | #endif /* linux */
|
---|
1578 | #endif /* solaris */
|
---|
1579 | }
|
---|
1580 | }
|
---|
1581 | }
|
---|
1582 |
|
---|
1583 | return 0;
|
---|
1584 | }
|
---|
1585 |
|
---|
1586 | static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) {
|
---|
1587 | int ret;
|
---|
1588 | assert(CURRENT_THREAD==sl->threadid);
|
---|
1589 | if (!--sl->c) {
|
---|
1590 | sl->threadid=0;
|
---|
1591 | __asm__ __volatile__ ("xchgl %2,(%1)" : "=r" (ret) : "r" (&sl->l), "0" (0));
|
---|
1592 | }
|
---|
1593 | }
|
---|
1594 |
|
---|
1595 | static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) {
|
---|
1596 | int ret;
|
---|
1597 | __asm__ __volatile__ ("lock cmpxchgl %2,(%1)" : "=a" (ret) : "r" (&sl->l), "r" (1), "a" (0));
|
---|
1598 | if(!ret){
|
---|
1599 | assert(!sl->threadid);
|
---|
1600 | sl->threadid=CURRENT_THREAD;
|
---|
1601 | sl->c=1;
|
---|
1602 | return 1;
|
---|
1603 | }
|
---|
1604 | return 0;
|
---|
1605 | }
|
---|
1606 |
|
---|
1607 | #define INITIAL_LOCK(sl) (memset((sl), 0, sizeof(MLOCK_T)), 0)
|
---|
1608 | #define ACQUIRE_LOCK(sl) pthread_acquire_lock(sl)
|
---|
1609 | #define RELEASE_LOCK(sl) pthread_release_lock(sl)
|
---|
1610 | #define TRY_LOCK(sl) pthread_try_lock(sl)
|
---|
1611 | #define IS_LOCKED(sl) ((sl)->l)
|
---|
1612 |
|
---|
1613 | static MLOCK_T magic_init_mutex = {0, 0, 0 };
|
---|
1614 | #if HAVE_MORECORE
|
---|
1615 | static MLOCK_T morecore_mutex = {0, 0, 0 };
|
---|
1616 | #endif /* HAVE_MORECORE */
|
---|
1617 |
|
---|
1618 | #else /* WIN32 */
|
---|
1619 | /* Custom win32-style spin locks on x86 and x64 for MSC */
|
---|
1620 | struct win32_mlock_t
|
---|
1621 | {
|
---|
1622 | volatile long threadid;
|
---|
1623 | volatile unsigned int c;
|
---|
1624 | long l;
|
---|
1625 | };
|
---|
1626 | #define MLOCK_T struct win32_mlock_t
|
---|
1627 | #define CURRENT_THREAD GetCurrentThreadId()
|
---|
1628 | #define SPINS_PER_YIELD 63
|
---|
1629 | static FORCEINLINE int win32_acquire_lock (MLOCK_T *sl) {
|
---|
1630 | long mythreadid=CURRENT_THREAD;
|
---|
1631 | if(mythreadid==sl->threadid)
|
---|
1632 | ++sl->c;
|
---|
1633 | else {
|
---|
1634 | int spins = 0;
|
---|
1635 | for (;;) {
|
---|
1636 | if (!interlockedexchange(&sl->l, 1)) {
|
---|
1637 | assert(!sl->threadid);
|
---|
1638 | sl->threadid=mythreadid;
|
---|
1639 | sl->c=1;
|
---|
1640 | break;
|
---|
1641 | }
|
---|
1642 | if ((++spins & SPINS_PER_YIELD) == 0)
|
---|
1643 | SleepEx(0, FALSE);
|
---|
1644 | }
|
---|
1645 | }
|
---|
1646 | return 0;
|
---|
1647 | }
|
---|
1648 |
|
---|
1649 | static FORCEINLINE void win32_release_lock (MLOCK_T *sl) {
|
---|
1650 | assert(CURRENT_THREAD==sl->threadid);
|
---|
1651 | if (!--sl->c) {
|
---|
1652 | sl->threadid=0;
|
---|
1653 | interlockedexchange (&sl->l, 0);
|
---|
1654 | }
|
---|
1655 | }
|
---|
1656 |
|
---|
1657 | static FORCEINLINE int win32_try_lock (MLOCK_T *sl) {
|
---|
1658 | if (!interlockedexchange(&sl->l, 1)){
|
---|
1659 | assert(!sl->threadid);
|
---|
1660 | sl->threadid=CURRENT_THREAD;
|
---|
1661 | sl->c=1;
|
---|
1662 | return 1;
|
---|
1663 | }
|
---|
1664 | return 0;
|
---|
1665 | }
|
---|
1666 |
|
---|
1667 | #define INITIAL_LOCK(sl) (memset(sl, 0, sizeof(MLOCK_T)), 0)
|
---|
1668 | #define ACQUIRE_LOCK(sl) win32_acquire_lock(sl)
|
---|
1669 | #define RELEASE_LOCK(sl) win32_release_lock(sl)
|
---|
1670 | #define TRY_LOCK(sl) win32_try_lock(sl)
|
---|
1671 | #define IS_LOCKED(sl) ((sl)->l)
|
---|
1672 |
|
---|
1673 | static MLOCK_T magic_init_mutex = {0, 0 };
|
---|
1674 | #if HAVE_MORECORE
|
---|
1675 | static MLOCK_T morecore_mutex = {0, 0 };
|
---|
1676 | #endif /* HAVE_MORECORE */
|
---|
1677 |
|
---|
1678 | #endif /* WIN32 */
|
---|
1679 | #else /* USE_SPIN_LOCKS */
|
---|
1680 |
|
---|
1681 | #ifndef WIN32
|
---|
1682 | /* pthreads-based locks */
|
---|
1683 | struct pthread_mlock_t
|
---|
1684 | {
|
---|
1685 | volatile unsigned int c;
|
---|
1686 | pthread_mutex_t l;
|
---|
1687 | };
|
---|
1688 | #define MLOCK_T struct pthread_mlock_t
|
---|
1689 | #define CURRENT_THREAD pthread_self()
|
---|
1690 | static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) {
|
---|
1691 | if(!pthread_mutex_lock(&(sl)->l)){
|
---|
1692 | sl->c++;
|
---|
1693 | return 0;
|
---|
1694 | }
|
---|
1695 | return 1;
|
---|
1696 | }
|
---|
1697 |
|
---|
1698 | static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) {
|
---|
1699 | --sl->c;
|
---|
1700 | pthread_mutex_unlock(&(sl)->l);
|
---|
1701 | }
|
---|
1702 |
|
---|
1703 | static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) {
|
---|
1704 | if(!pthread_mutex_trylock(&(sl)->l)){
|
---|
1705 | sl->c++;
|
---|
1706 | return 1;
|
---|
1707 | }
|
---|
1708 | return 0;
|
---|
1709 | }
|
---|
1710 |
|
---|
1711 | static FORCEINLINE int pthread_init_lock (MLOCK_T *sl) {
|
---|
1712 | pthread_mutexattr_t attr;
|
---|
1713 | sl->c=0;
|
---|
1714 | if(pthread_mutexattr_init(&attr)) return 1;
|
---|
1715 | if(pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1;
|
---|
1716 | if(pthread_mutex_init(&sl->l, &attr)) return 1;
|
---|
1717 | pthread_mutexattr_destroy(&attr);
|
---|
1718 | return 0;
|
---|
1719 | }
|
---|
1720 |
|
---|
1721 | static FORCEINLINE int pthread_islocked (MLOCK_T *sl) {
|
---|
1722 | if(!pthread_try_lock(sl)){
|
---|
1723 | int ret = (sl->c != 0);
|
---|
1724 | pthread_mutex_unlock(sl);
|
---|
1725 | return ret;
|
---|
1726 | }
|
---|
1727 | return 0;
|
---|
1728 | }
|
---|
1729 |
|
---|
1730 | #define INITIAL_LOCK(sl) pthread_init_lock(sl)
|
---|
1731 | #define ACQUIRE_LOCK(sl) pthread_acquire_lock(sl)
|
---|
1732 | #define RELEASE_LOCK(sl) pthread_release_lock(sl)
|
---|
1733 | #define TRY_LOCK(sl) pthread_try_lock(sl)
|
---|
1734 | #define IS_LOCKED(sl) pthread_islocked(sl)
|
---|
1735 |
|
---|
1736 | static MLOCK_T magic_init_mutex = {0, PTHREAD_MUTEX_INITIALIZER };
|
---|
1737 | #if HAVE_MORECORE
|
---|
1738 | static MLOCK_T morecore_mutex = {0, PTHREAD_MUTEX_INITIALIZER };
|
---|
1739 | #endif /* HAVE_MORECORE */
|
---|
1740 |
|
---|
1741 | #else /* WIN32 */
|
---|
1742 | /* Win32 critical sections */
|
---|
1743 | #define MLOCK_T CRITICAL_SECTION
|
---|
1744 | #define CURRENT_THREAD GetCurrentThreadId()
|
---|
1745 | #define INITIAL_LOCK(s) (!InitializeCriticalSectionAndSpinCount((s), 4000)
|
---|
1746 | #define ACQUIRE_LOCK(s) ( (!((s))->DebugInfo ? INITIAL_LOCK((s)) : 0), !EnterCriticalSection((s)), 0)
|
---|
1747 | #define RELEASE_LOCK(s) ( LeaveCriticalSection((s)), 0 )
|
---|
1748 | #define TRY_LOCK(s) ( TryEnterCriticalSection((s)) )
|
---|
1749 | #define IS_LOCKED(s) ( (s)->LockCount >= 0 )
|
---|
1750 | #define NULL_LOCK_INITIALIZER
|
---|
1751 | static MLOCK_T magic_init_mutex;
|
---|
1752 | #if HAVE_MORECORE
|
---|
1753 | static MLOCK_T morecore_mutex;
|
---|
1754 | #endif /* HAVE_MORECORE */
|
---|
1755 | #endif /* WIN32 */
|
---|
1756 | #endif /* USE_SPIN_LOCKS */
|
---|
1757 | #endif /* USE_LOCKS == 1 */
|
---|
1758 |
|
---|
1759 | /* ----------------------- User-defined locks ------------------------ */
|
---|
1760 |
|
---|
1761 | #if USE_LOCKS > 1
|
---|
1762 | /* Define your own lock implementation here */
|
---|
1763 | /* #define INITIAL_LOCK(sl) ... */
|
---|
1764 | /* #define ACQUIRE_LOCK(sl) ... */
|
---|
1765 | /* #define RELEASE_LOCK(sl) ... */
|
---|
1766 | /* #define TRY_LOCK(sl) ... */
|
---|
1767 | /* #define IS_LOCKED(sl) ... */
|
---|
1768 | /* #define NULL_LOCK_INITIALIZER ... */
|
---|
1769 |
|
---|
1770 | static MLOCK_T magic_init_mutex = NULL_LOCK_INITIALIZER;
|
---|
1771 | #if HAVE_MORECORE
|
---|
1772 | static MLOCK_T morecore_mutex = NULL_LOCK_INITIALIZER;
|
---|
1773 | #endif /* HAVE_MORECORE */
|
---|
1774 | #endif /* USE_LOCKS > 1 */
|
---|
1775 |
|
---|
1776 | /* ----------------------- Lock-based state ------------------------ */
|
---|
1777 |
|
---|
1778 |
|
---|
1779 | #if USE_LOCKS
|
---|
1780 | #define USE_LOCK_BIT (2U)
|
---|
1781 | #else /* USE_LOCKS */
|
---|
1782 | #define USE_LOCK_BIT (0U)
|
---|
1783 | #define INITIAL_LOCK(l)
|
---|
1784 | #endif /* USE_LOCKS */
|
---|
1785 |
|
---|
1786 | #if USE_LOCKS && HAVE_MORECORE
|
---|
1787 | #define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex);
|
---|
1788 | #define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex);
|
---|
1789 | #else /* USE_LOCKS && HAVE_MORECORE */
|
---|
1790 | #define ACQUIRE_MORECORE_LOCK()
|
---|
1791 | #define RELEASE_MORECORE_LOCK()
|
---|
1792 | #endif /* USE_LOCKS && HAVE_MORECORE */
|
---|
1793 |
|
---|
1794 | #if USE_LOCKS
|
---|
1795 | #define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex);
|
---|
1796 | #define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex);
|
---|
1797 | #else /* USE_LOCKS */
|
---|
1798 | #define ACQUIRE_MAGIC_INIT_LOCK()
|
---|
1799 | #define RELEASE_MAGIC_INIT_LOCK()
|
---|
1800 | #endif /* USE_LOCKS */
|
---|
1801 |
|
---|
1802 |
|
---|
1803 | /* ----------------------- Chunk representations ------------------------ */
|
---|
1804 |
|
---|
1805 | /*
|
---|
1806 | (The following includes lightly edited explanations by Colin Plumb.)
|
---|
1807 |
|
---|
1808 | The malloc_chunk declaration below is misleading (but accurate and
|
---|
1809 | necessary). It declares a "view" into memory allowing access to
|
---|
1810 | necessary fields at known offsets from a given base.
|
---|
1811 |
|
---|
1812 | Chunks of memory are maintained using a `boundary tag' method as
|
---|
1813 | originally described by Knuth. (See the paper by Paul Wilson
|
---|
1814 | ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
|
---|
1815 | techniques.) Sizes of free chunks are stored both in the front of
|
---|
1816 | each chunk and at the end. This makes consolidating fragmented
|
---|
1817 | chunks into bigger chunks fast. The head fields also hold bits
|
---|
1818 | representing whether chunks are free or in use.
|
---|
1819 |
|
---|
1820 | Here are some pictures to make it clearer. They are "exploded" to
|
---|
1821 | show that the state of a chunk can be thought of as extending from
|
---|
1822 | the high 31 bits of the head field of its header through the
|
---|
1823 | prev_foot and PINUSE_BIT bit of the following chunk header.
|
---|
1824 |
|
---|
1825 | A chunk that's in use looks like:
|
---|
1826 |
|
---|
1827 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
1828 | | Size of previous chunk (if P = 1) |
|
---|
1829 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
1830 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
|
---|
1831 | | Size of this chunk 1| +-+
|
---|
1832 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
1833 | | |
|
---|
1834 | +- -+
|
---|
1835 | | |
|
---|
1836 | +- -+
|
---|
1837 | | :
|
---|
1838 | +- size - sizeof(size_t) available payload bytes -+
|
---|
1839 | : |
|
---|
1840 | chunk-> +- -+
|
---|
1841 | | |
|
---|
1842 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
1843 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
|
---|
1844 | | Size of next chunk (may or may not be in use) | +-+
|
---|
1845 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
1846 |
|
---|
1847 | And if it's free, it looks like this:
|
---|
1848 |
|
---|
1849 | chunk-> +- -+
|
---|
1850 | | User payload (must be in use, or we would have merged!) |
|
---|
1851 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
1852 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
|
---|
1853 | | Size of this chunk 0| +-+
|
---|
1854 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
1855 | | Next pointer |
|
---|
1856 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
1857 | | Prev pointer |
|
---|
1858 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
1859 | | :
|
---|
1860 | +- size - sizeof(struct chunk) unused bytes -+
|
---|
1861 | : |
|
---|
1862 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
1863 | | Size of this chunk |
|
---|
1864 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
1865 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
|
---|
1866 | | Size of next chunk (must be in use, or we would have merged)| +-+
|
---|
1867 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
1868 | | :
|
---|
1869 | +- User payload -+
|
---|
1870 | : |
|
---|
1871 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
1872 | |0|
|
---|
1873 | +-+
|
---|
1874 | Note that since we always merge adjacent free chunks, the chunks
|
---|
1875 | adjacent to a free chunk must be in use.
|
---|
1876 |
|
---|
1877 | Given a pointer to a chunk (which can be derived trivially from the
|
---|
1878 | payload pointer) we can, in O(1) time, find out whether the adjacent
|
---|
1879 | chunks are free, and if so, unlink them from the lists that they
|
---|
1880 | are on and merge them with the current chunk.
|
---|
1881 |
|
---|
1882 | Chunks always begin on even word boundaries, so the mem portion
|
---|
1883 | (which is returned to the user) is also on an even word boundary, and
|
---|
1884 | thus at least double-word aligned.
|
---|
1885 |
|
---|
1886 | The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
|
---|
1887 | chunk size (which is always a multiple of two words), is an in-use
|
---|
1888 | bit for the *previous* chunk. If that bit is *clear*, then the
|
---|
1889 | word before the current chunk size contains the previous chunk
|
---|
1890 | size, and can be used to find the front of the previous chunk.
|
---|
1891 | The very first chunk allocated always has this bit set, preventing
|
---|
1892 | access to non-existent (or non-owned) memory. If pinuse is set for
|
---|
1893 | any given chunk, then you CANNOT determine the size of the
|
---|
1894 | previous chunk, and might even get a memory addressing fault when
|
---|
1895 | trying to do so.
|
---|
1896 |
|
---|
1897 | The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
|
---|
1898 | the chunk size redundantly records whether the current chunk is
|
---|
1899 | inuse. This redundancy enables usage checks within free and realloc,
|
---|
1900 | and reduces indirection when freeing and consolidating chunks.
|
---|
1901 |
|
---|
1902 | Each freshly allocated chunk must have both cinuse and pinuse set.
|
---|
1903 | That is, each allocated chunk borders either a previously allocated
|
---|
1904 | and still in-use chunk, or the base of its memory arena. This is
|
---|
1905 | ensured by making all allocations from the the `lowest' part of any
|
---|
1906 | found chunk. Further, no free chunk physically borders another one,
|
---|
1907 | so each free chunk is known to be preceded and followed by either
|
---|
1908 | inuse chunks or the ends of memory.
|
---|
1909 |
|
---|
1910 | Note that the `foot' of the current chunk is actually represented
|
---|
1911 | as the prev_foot of the NEXT chunk. This makes it easier to
|
---|
1912 | deal with alignments etc but can be very confusing when trying
|
---|
1913 | to extend or adapt this code.
|
---|
1914 |
|
---|
1915 | The exceptions to all this are
|
---|
1916 |
|
---|
1917 | 1. The special chunk `top' is the top-most available chunk (i.e.,
|
---|
1918 | the one bordering the end of available memory). It is treated
|
---|
1919 | specially. Top is never included in any bin, is used only if
|
---|
1920 | no other chunk is available, and is released back to the
|
---|
1921 | system if it is very large (see M_TRIM_THRESHOLD). In effect,
|
---|
1922 | the top chunk is treated as larger (and thus less well
|
---|
1923 | fitting) than any other available chunk. The top chunk
|
---|
1924 | doesn't update its trailing size field since there is no next
|
---|
1925 | contiguous chunk that would have to index off it. However,
|
---|
1926 | space is still allocated for it (TOP_FOOT_SIZE) to enable
|
---|
1927 | separation or merging when space is extended.
|
---|
1928 |
|
---|
1929 | 3. Chunks allocated via mmap, which have the lowest-order bit
|
---|
1930 | (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
|
---|
1931 | PINUSE_BIT in their head fields. Because they are allocated
|
---|
1932 | one-by-one, each must carry its own prev_foot field, which is
|
---|
1933 | also used to hold the offset this chunk has within its mmapped
|
---|
1934 | region, which is needed to preserve alignment. Each mmapped
|
---|
1935 | chunk is trailed by the first two fields of a fake next-chunk
|
---|
1936 | for sake of usage checks.
|
---|
1937 |
|
---|
1938 | */
|
---|
1939 |
|
---|
1940 | struct malloc_chunk {
|
---|
1941 | size_t prev_foot; /* Size of previous chunk (if free). */
|
---|
1942 | size_t head; /* Size and inuse bits. */
|
---|
1943 | struct malloc_chunk* fd; /* double links -- used only if free. */
|
---|
1944 | struct malloc_chunk* bk;
|
---|
1945 | };
|
---|
1946 |
|
---|
1947 | typedef struct malloc_chunk mchunk;
|
---|
1948 | typedef struct malloc_chunk* mchunkptr;
|
---|
1949 | typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
|
---|
1950 | typedef unsigned int bindex_t; /* Described below */
|
---|
1951 | typedef unsigned int binmap_t; /* Described below */
|
---|
1952 | typedef unsigned int flag_t; /* The type of various bit flag sets */
|
---|
1953 |
|
---|
1954 | /* ------------------- Chunks sizes and alignments ----------------------- */
|
---|
1955 |
|
---|
1956 | #define MCHUNK_SIZE (sizeof(mchunk))
|
---|
1957 |
|
---|
1958 | #if FOOTERS
|
---|
1959 | #define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
|
---|
1960 | #else /* FOOTERS */
|
---|
1961 | #define CHUNK_OVERHEAD (SIZE_T_SIZE)
|
---|
1962 | #endif /* FOOTERS */
|
---|
1963 |
|
---|
1964 | /* MMapped chunks need a second word of overhead ... */
|
---|
1965 | #define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
|
---|
1966 | /* ... and additional padding for fake next-chunk at foot */
|
---|
1967 | #define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
|
---|
1968 |
|
---|
1969 | /* The smallest size we can malloc is an aligned minimal chunk */
|
---|
1970 | #define MIN_CHUNK_SIZE\
|
---|
1971 | ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
|
---|
1972 |
|
---|
1973 | /* conversion from malloc headers to user pointers, and back */
|
---|
1974 | #define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
|
---|
1975 | #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
|
---|
1976 | /* chunk associated with aligned address A */
|
---|
1977 | #define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
|
---|
1978 |
|
---|
1979 | /* Bounds on request (not chunk) sizes. */
|
---|
1980 | #define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
|
---|
1981 | #define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
|
---|
1982 |
|
---|
1983 | /* pad request bytes into a usable size */
|
---|
1984 | #define pad_request(req) \
|
---|
1985 | (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
|
---|
1986 |
|
---|
1987 | /* pad request, checking for minimum (but not maximum) */
|
---|
1988 | #define request2size(req) \
|
---|
1989 | (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
|
---|
1990 |
|
---|
1991 |
|
---|
1992 | /* ------------------ Operations on head and foot fields ----------------- */
|
---|
1993 |
|
---|
1994 | /*
|
---|
1995 | The head field of a chunk is or'ed with PINUSE_BIT when previous
|
---|
1996 | adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
|
---|
1997 | use. If the chunk was obtained with mmap, the prev_foot field has
|
---|
1998 | IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
|
---|
1999 | mmapped region to the base of the chunk.
|
---|
2000 |
|
---|
2001 | FLAG4_BIT is not used by this malloc, but might be useful in extensions.
|
---|
2002 | */
|
---|
2003 |
|
---|
2004 | #define PINUSE_BIT (SIZE_T_ONE)
|
---|
2005 | #define CINUSE_BIT (SIZE_T_TWO)
|
---|
2006 | #define FLAG4_BIT (SIZE_T_FOUR)
|
---|
2007 | #define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
|
---|
2008 | #define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)
|
---|
2009 |
|
---|
2010 | /* Head value for fenceposts */
|
---|
2011 | #define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
|
---|
2012 |
|
---|
2013 | /* extraction of fields from head words */
|
---|
2014 | #define cinuse(p) ((p)->head & CINUSE_BIT)
|
---|
2015 | #define pinuse(p) ((p)->head & PINUSE_BIT)
|
---|
2016 | #define chunksize(p) ((p)->head & ~(FLAG_BITS))
|
---|
2017 |
|
---|
2018 | #define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
|
---|
2019 | #define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
|
---|
2020 |
|
---|
2021 | /* Treat space at ptr +/- offset as a chunk */
|
---|
2022 | #define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
|
---|
2023 | #define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
|
---|
2024 |
|
---|
2025 | /* Ptr to next or previous physical malloc_chunk. */
|
---|
2026 | #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))
|
---|
2027 | #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
|
---|
2028 |
|
---|
2029 | /* extract next chunk's pinuse bit */
|
---|
2030 | #define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
|
---|
2031 |
|
---|
2032 | /* Get/set size at footer */
|
---|
2033 | #define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
|
---|
2034 | #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
|
---|
2035 |
|
---|
2036 | /* Set size, pinuse bit, and foot */
|
---|
2037 | #define set_size_and_pinuse_of_free_chunk(p, s)\
|
---|
2038 | ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
|
---|
2039 |
|
---|
2040 | /* Set size, pinuse bit, foot, and clear next pinuse */
|
---|
2041 | #define set_free_with_pinuse(p, s, n)\
|
---|
2042 | (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
|
---|
2043 |
|
---|
2044 | #define is_mmapped(p)\
|
---|
2045 | (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
|
---|
2046 |
|
---|
2047 | /* Get the internal overhead associated with chunk p */
|
---|
2048 | #define overhead_for(p)\
|
---|
2049 | (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
|
---|
2050 |
|
---|
2051 | /* Return true if malloced space is not necessarily cleared */
|
---|
2052 | #if MMAP_CLEARS
|
---|
2053 | #define calloc_must_clear(p) (!is_mmapped(p))
|
---|
2054 | #else /* MMAP_CLEARS */
|
---|
2055 | #define calloc_must_clear(p) (1)
|
---|
2056 | #endif /* MMAP_CLEARS */
|
---|
2057 |
|
---|
2058 | /* ---------------------- Overlaid data structures ----------------------- */
|
---|
2059 |
|
---|
2060 | /*
|
---|
2061 | When chunks are not in use, they are treated as nodes of either
|
---|
2062 | lists or trees.
|
---|
2063 |
|
---|
2064 | "Small" chunks are stored in circular doubly-linked lists, and look
|
---|
2065 | like this:
|
---|
2066 |
|
---|
2067 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2068 | | Size of previous chunk |
|
---|
2069 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2070 | `head:' | Size of chunk, in bytes |P|
|
---|
2071 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2072 | | Forward pointer to next chunk in list |
|
---|
2073 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2074 | | Back pointer to previous chunk in list |
|
---|
2075 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2076 | | Unused space (may be 0 bytes long) .
|
---|
2077 | . .
|
---|
2078 | . |
|
---|
2079 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2080 | `foot:' | Size of chunk, in bytes |
|
---|
2081 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2082 |
|
---|
2083 | Larger chunks are kept in a form of bitwise digital trees (aka
|
---|
2084 | tries) keyed on chunksizes. Because malloc_tree_chunks are only for
|
---|
2085 | free chunks greater than 256 bytes, their size doesn't impose any
|
---|
2086 | constraints on user chunk sizes. Each node looks like:
|
---|
2087 |
|
---|
2088 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2089 | | Size of previous chunk |
|
---|
2090 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2091 | `head:' | Size of chunk, in bytes |P|
|
---|
2092 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2093 | | Forward pointer to next chunk of same size |
|
---|
2094 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2095 | | Back pointer to previous chunk of same size |
|
---|
2096 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2097 | | Pointer to left child (child[0]) |
|
---|
2098 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2099 | | Pointer to right child (child[1]) |
|
---|
2100 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2101 | | Pointer to parent |
|
---|
2102 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2103 | | bin index of this chunk |
|
---|
2104 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2105 | | Unused space .
|
---|
2106 | . |
|
---|
2107 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2108 | `foot:' | Size of chunk, in bytes |
|
---|
2109 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
---|
2110 |
|
---|
2111 | Each tree holding treenodes is a tree of unique chunk sizes. Chunks
|
---|
2112 | of the same size are arranged in a circularly-linked list, with only
|
---|
2113 | the oldest chunk (the next to be used, in our FIFO ordering)
|
---|
2114 | actually in the tree. (Tree members are distinguished by a non-null
|
---|
2115 | parent pointer.) If a chunk with the same size an an existing node
|
---|
2116 | is inserted, it is linked off the existing node using pointers that
|
---|
2117 | work in the same way as fd/bk pointers of small chunks.
|
---|
2118 |
|
---|
2119 | Each tree contains a power of 2 sized range of chunk sizes (the
|
---|
2120 | smallest is 0x100 <= x < 0x180), which is is divided in half at each
|
---|
2121 | tree level, with the chunks in the smaller half of the range (0x100
|
---|
2122 | <= x < 0x140 for the top nose) in the left subtree and the larger
|
---|
2123 | half (0x140 <= x < 0x180) in the right subtree. This is, of course,
|
---|
2124 | done by inspecting individual bits.
|
---|
2125 |
|
---|
2126 | Using these rules, each node's left subtree contains all smaller
|
---|
2127 | sizes than its right subtree. However, the node at the root of each
|
---|
2128 | subtree has no particular ordering relationship to either. (The
|
---|
2129 | dividing line between the subtree sizes is based on trie relation.)
|
---|
2130 | If we remove the last chunk of a given size from the interior of the
|
---|
2131 | tree, we need to replace it with a leaf node. The tree ordering
|
---|
2132 | rules permit a node to be replaced by any leaf below it.
|
---|
2133 |
|
---|
2134 | The smallest chunk in a tree (a common operation in a best-fit
|
---|
2135 | allocator) can be found by walking a path to the leftmost leaf in
|
---|
2136 | the tree. Unlike a usual binary tree, where we follow left child
|
---|
2137 | pointers until we reach a null, here we follow the right child
|
---|
2138 | pointer any time the left one is null, until we reach a leaf with
|
---|
2139 | both child pointers null. The smallest chunk in the tree will be
|
---|
2140 | somewhere along that path.
|
---|
2141 |
|
---|
2142 | The worst case number of steps to add, find, or remove a node is
|
---|
2143 | bounded by the number of bits differentiating chunks within
|
---|
2144 | bins. Under current bin calculations, this ranges from 6 up to 21
|
---|
2145 | (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
|
---|
2146 | is of course much better.
|
---|
2147 | */
|
---|
2148 |
|
---|
2149 | struct malloc_tree_chunk {
|
---|
2150 | /* The first four fields must be compatible with malloc_chunk */
|
---|
2151 | size_t prev_foot;
|
---|
2152 | size_t head;
|
---|
2153 | struct malloc_tree_chunk* fd;
|
---|
2154 | struct malloc_tree_chunk* bk;
|
---|
2155 |
|
---|
2156 | struct malloc_tree_chunk* child[2];
|
---|
2157 | struct malloc_tree_chunk* parent;
|
---|
2158 | bindex_t index;
|
---|
2159 | };
|
---|
2160 |
|
---|
2161 | typedef struct malloc_tree_chunk tchunk;
|
---|
2162 | typedef struct malloc_tree_chunk* tchunkptr;
|
---|
2163 | typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
|
---|
2164 |
|
---|
2165 | /* A little helper macro for trees */
|
---|
2166 | #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
|
---|
2167 |
|
---|
2168 | /* ----------------------------- Segments -------------------------------- */
|
---|
2169 |
|
---|
2170 | /*
|
---|
2171 | Each malloc space may include non-contiguous segments, held in a
|
---|
2172 | list headed by an embedded malloc_segment record representing the
|
---|
2173 | top-most space. Segments also include flags holding properties of
|
---|
2174 | the space. Large chunks that are directly allocated by mmap are not
|
---|
2175 | included in this list. They are instead independently created and
|
---|
2176 | destroyed without otherwise keeping track of them.
|
---|
2177 |
|
---|
2178 | Segment management mainly comes into play for spaces allocated by
|
---|
2179 | MMAP. Any call to MMAP might or might not return memory that is
|
---|
2180 | adjacent to an existing segment. MORECORE normally contiguously
|
---|
2181 | extends the current space, so this space is almost always adjacent,
|
---|
2182 | which is simpler and faster to deal with. (This is why MORECORE is
|
---|
2183 | used preferentially to MMAP when both are available -- see
|
---|
2184 | sys_alloc.) When allocating using MMAP, we don't use any of the
|
---|
2185 | hinting mechanisms (inconsistently) supported in various
|
---|
2186 | implementations of unix mmap, or distinguish reserving from
|
---|
2187 | committing memory. Instead, we just ask for space, and exploit
|
---|
2188 | contiguity when we get it. It is probably possible to do
|
---|
2189 | better than this on some systems, but no general scheme seems
|
---|
2190 | to be significantly better.
|
---|
2191 |
|
---|
2192 | Management entails a simpler variant of the consolidation scheme
|
---|
2193 | used for chunks to reduce fragmentation -- new adjacent memory is
|
---|
2194 | normally prepended or appended to an existing segment. However,
|
---|
2195 | there are limitations compared to chunk consolidation that mostly
|
---|
2196 | reflect the fact that segment processing is relatively infrequent
|
---|
2197 | (occurring only when getting memory from system) and that we
|
---|
2198 | don't expect to have huge numbers of segments:
|
---|
2199 |
|
---|
2200 | * Segments are not indexed, so traversal requires linear scans. (It
|
---|
2201 | would be possible to index these, but is not worth the extra
|
---|
2202 | overhead and complexity for most programs on most platforms.)
|
---|
2203 | * New segments are only appended to old ones when holding top-most
|
---|
2204 | memory; if they cannot be prepended to others, they are held in
|
---|
2205 | different segments.
|
---|
2206 |
|
---|
2207 | Except for the top-most segment of an mstate, each segment record
|
---|
2208 | is kept at the tail of its segment. Segments are added by pushing
|
---|
2209 | segment records onto the list headed by &mstate.seg for the
|
---|
2210 | containing mstate.
|
---|
2211 |
|
---|
2212 | Segment flags control allocation/merge/deallocation policies:
|
---|
2213 | * If EXTERN_BIT set, then we did not allocate this segment,
|
---|
2214 | and so should not try to deallocate or merge with others.
|
---|
2215 | (This currently holds only for the initial segment passed
|
---|
2216 | into create_mspace_with_base.)
|
---|
2217 | * If IS_MMAPPED_BIT set, the segment may be merged with
|
---|
2218 | other surrounding mmapped segments and trimmed/de-allocated
|
---|
2219 | using munmap.
|
---|
2220 | * If neither bit is set, then the segment was obtained using
|
---|
2221 | MORECORE so can be merged with surrounding MORECORE'd segments
|
---|
2222 | and deallocated/trimmed using MORECORE with negative arguments.
|
---|
2223 | */
|
---|
2224 |
|
---|
2225 | struct malloc_segment {
|
---|
2226 | char* base; /* base address */
|
---|
2227 | size_t size; /* allocated size */
|
---|
2228 | struct malloc_segment* next; /* ptr to next segment */
|
---|
2229 | flag_t sflags; /* mmap and extern flag */
|
---|
2230 | };
|
---|
2231 |
|
---|
2232 | #define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT)
|
---|
2233 | #define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
|
---|
2234 |
|
---|
2235 | typedef struct malloc_segment msegment;
|
---|
2236 | typedef struct malloc_segment* msegmentptr;
|
---|
2237 |
|
---|
2238 | /* ---------------------------- malloc_state ----------------------------- */
|
---|
2239 |
|
---|
2240 | /*
|
---|
2241 | A malloc_state holds all of the bookkeeping for a space.
|
---|
2242 | The main fields are:
|
---|
2243 |
|
---|
2244 | Top
|
---|
2245 | The topmost chunk of the currently active segment. Its size is
|
---|
2246 | cached in topsize. The actual size of topmost space is
|
---|
2247 | topsize+TOP_FOOT_SIZE, which includes space reserved for adding
|
---|
2248 | fenceposts and segment records if necessary when getting more
|
---|
2249 | space from the system. The size at which to autotrim top is
|
---|
2250 | cached from mparams in trim_check, except that it is disabled if
|
---|
2251 | an autotrim fails.
|
---|
2252 |
|
---|
2253 | Designated victim (dv)
|
---|
2254 | This is the preferred chunk for servicing small requests that
|
---|
2255 | don't have exact fits. It is normally the chunk split off most
|
---|
2256 | recently to service another small request. Its size is cached in
|
---|
2257 | dvsize. The link fields of this chunk are not maintained since it
|
---|
2258 | is not kept in a bin.
|
---|
2259 |
|
---|
2260 | SmallBins
|
---|
2261 | An array of bin headers for free chunks. These bins hold chunks
|
---|
2262 | with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
|
---|
2263 | chunks of all the same size, spaced 8 bytes apart. To simplify
|
---|
2264 | use in double-linked lists, each bin header acts as a malloc_chunk
|
---|
2265 | pointing to the real first node, if it exists (else pointing to
|
---|
2266 | itself). This avoids special-casing for headers. But to avoid
|
---|
2267 | waste, we allocate only the fd/bk pointers of bins, and then use
|
---|
2268 | repositioning tricks to treat these as the fields of a chunk.
|
---|
2269 |
|
---|
2270 | TreeBins
|
---|
2271 | Treebins are pointers to the roots of trees holding a range of
|
---|
2272 | sizes. There are 2 equally spaced treebins for each power of two
|
---|
2273 | from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
|
---|
2274 | larger.
|
---|
2275 |
|
---|
2276 | Bin maps
|
---|
2277 | There is one bit map for small bins ("smallmap") and one for
|
---|
2278 | treebins ("treemap). Each bin sets its bit when non-empty, and
|
---|
2279 | clears the bit when empty. Bit operations are then used to avoid
|
---|
2280 | bin-by-bin searching -- nearly all "search" is done without ever
|
---|
2281 | looking at bins that won't be selected. The bit maps
|
---|
2282 | conservatively use 32 bits per map word, even if on 64bit system.
|
---|
2283 | For a good description of some of the bit-based techniques used
|
---|
2284 | here, see Henry S. Warren Jr's book "Hacker's Delight" (and
|
---|
2285 | supplement at http://hackersdelight.org/). Many of these are
|
---|
2286 | intended to reduce the branchiness of paths through malloc etc, as
|
---|
2287 | well as to reduce the number of memory locations read or written.
|
---|
2288 |
|
---|
2289 | Segments
|
---|
2290 | A list of segments headed by an embedded malloc_segment record
|
---|
2291 | representing the initial space.
|
---|
2292 |
|
---|
2293 | Address check support
|
---|
2294 | The least_addr field is the least address ever obtained from
|
---|
2295 | MORECORE or MMAP. Attempted frees and reallocs of any address less
|
---|
2296 | than this are trapped (unless INSECURE is defined).
|
---|
2297 |
|
---|
2298 | Magic tag
|
---|
2299 | A cross-check field that should always hold same value as mparams.magic.
|
---|
2300 |
|
---|
2301 | Flags
|
---|
2302 | Bits recording whether to use MMAP, locks, or contiguous MORECORE
|
---|
2303 |
|
---|
2304 | Statistics
|
---|
2305 | Each space keeps track of current and maximum system memory
|
---|
2306 | obtained via MORECORE or MMAP.
|
---|
2307 |
|
---|
2308 | Trim support
|
---|
2309 | Fields holding the amount of unused topmost memory that should trigger
|
---|
2310 | timming, and a counter to force periodic scanning to release unused
|
---|
2311 | non-topmost segments.
|
---|
2312 |
|
---|
2313 | Locking
|
---|
2314 | If USE_LOCKS is defined, the "mutex" lock is acquired and released
|
---|
2315 | around every public call using this mspace.
|
---|
2316 |
|
---|
2317 | Extension support
|
---|
2318 | A void* pointer and a size_t field that can be used to help implement
|
---|
2319 | extensions to this malloc.
|
---|
2320 | */
|
---|
2321 |
|
---|
2322 | /* Bin types, widths and sizes */
|
---|
2323 | #define NSMALLBINS (32U)
|
---|
2324 | #define NTREEBINS (32U)
|
---|
2325 | #define SMALLBIN_SHIFT (3U)
|
---|
2326 | #define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
|
---|
2327 | #define TREEBIN_SHIFT (8U)
|
---|
2328 | #define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
|
---|
2329 | #define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
|
---|
2330 | #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
|
---|
2331 |
|
---|
2332 | struct malloc_state {
|
---|
2333 | binmap_t smallmap;
|
---|
2334 | binmap_t treemap;
|
---|
2335 | size_t dvsize;
|
---|
2336 | size_t topsize;
|
---|
2337 | char* least_addr;
|
---|
2338 | mchunkptr dv;
|
---|
2339 | mchunkptr top;
|
---|
2340 | size_t trim_check;
|
---|
2341 | size_t release_checks;
|
---|
2342 | size_t magic;
|
---|
2343 | mchunkptr smallbins[(NSMALLBINS+1)*2];
|
---|
2344 | tbinptr treebins[NTREEBINS];
|
---|
2345 | size_t footprint;
|
---|
2346 | size_t max_footprint;
|
---|
2347 | flag_t mflags;
|
---|
2348 | #if USE_LOCKS
|
---|
2349 | MLOCK_T mutex; /* locate lock among fields that rarely change */
|
---|
2350 | #endif /* USE_LOCKS */
|
---|
2351 | msegment seg;
|
---|
2352 | void* extp; /* Unused but available for extensions */
|
---|
2353 | size_t exts;
|
---|
2354 | };
|
---|
2355 |
|
---|
2356 | typedef struct malloc_state* mstate;
|
---|
2357 |
|
---|
2358 | /* ------------- Global malloc_state and malloc_params ------------------- */
|
---|
2359 |
|
---|
2360 | /*
|
---|
2361 | malloc_params holds global properties, including those that can be
|
---|
2362 | dynamically set using mallopt. There is a single instance, mparams,
|
---|
2363 | initialized in init_mparams.
|
---|
2364 | */
|
---|
2365 |
|
---|
2366 | struct malloc_params {
|
---|
2367 | size_t magic;
|
---|
2368 | size_t page_size;
|
---|
2369 | size_t granularity;
|
---|
2370 | size_t mmap_threshold;
|
---|
2371 | size_t trim_threshold;
|
---|
2372 | flag_t default_mflags;
|
---|
2373 | };
|
---|
2374 |
|
---|
2375 | static struct malloc_params mparams;
|
---|
2376 |
|
---|
2377 | #if !ONLY_MSPACES
|
---|
2378 |
|
---|
2379 | /* The global malloc_state used for all non-"mspace" calls */
|
---|
2380 | static struct malloc_state _gm_;
|
---|
2381 | #define gm (&_gm_)
|
---|
2382 | #define is_global(M) ((M) == &_gm_)
|
---|
2383 |
|
---|
2384 | #endif /* !ONLY_MSPACES */
|
---|
2385 |
|
---|
2386 | #define is_initialized(M) ((M)->top != 0)
|
---|
2387 |
|
---|
2388 | /* -------------------------- system alloc setup ------------------------- */
|
---|
2389 |
|
---|
2390 | /* Operations on mflags */
|
---|
2391 |
|
---|
2392 | #define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
|
---|
2393 | #define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
|
---|
2394 | #define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
|
---|
2395 |
|
---|
2396 | #define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
|
---|
2397 | #define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
|
---|
2398 | #define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
|
---|
2399 |
|
---|
2400 | #define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
|
---|
2401 | #define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
|
---|
2402 |
|
---|
2403 | #define set_lock(M,L)\
|
---|
2404 | ((M)->mflags = (L)?\
|
---|
2405 | ((M)->mflags | USE_LOCK_BIT) :\
|
---|
2406 | ((M)->mflags & ~USE_LOCK_BIT))
|
---|
2407 |
|
---|
2408 | /* page-align a size */
|
---|
2409 | #define page_align(S)\
|
---|
2410 | (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))
|
---|
2411 |
|
---|
2412 | /* granularity-align a size */
|
---|
2413 | #define granularity_align(S)\
|
---|
2414 | (((S) + (mparams.granularity - SIZE_T_ONE))\
|
---|
2415 | & ~(mparams.granularity - SIZE_T_ONE))
|
---|
2416 |
|
---|
2417 |
|
---|
2418 | /* For mmap, use granularity alignment on windows, else page-align */
|
---|
2419 | #ifdef WIN32
|
---|
2420 | #define mmap_align(S) granularity_align(S)
|
---|
2421 | #else
|
---|
2422 | #define mmap_align(S) page_align(S)
|
---|
2423 | #endif
|
---|
2424 |
|
---|
2425 | #define is_page_aligned(S)\
|
---|
2426 | (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
|
---|
2427 | #define is_granularity_aligned(S)\
|
---|
2428 | (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
|
---|
2429 |
|
---|
2430 | /* True if segment S holds address A */
|
---|
2431 | #define segment_holds(S, A)\
|
---|
2432 | ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
|
---|
2433 |
|
---|
2434 | /* Return segment holding given address */
|
---|
2435 | static msegmentptr segment_holding(mstate m, char* addr) {
|
---|
2436 | msegmentptr sp = &m->seg;
|
---|
2437 | for (;;) {
|
---|
2438 | if (addr >= sp->base && addr < sp->base + sp->size)
|
---|
2439 | return sp;
|
---|
2440 | if ((sp = sp->next) == 0)
|
---|
2441 | return 0;
|
---|
2442 | }
|
---|
2443 | }
|
---|
2444 |
|
---|
2445 | /* Return true if segment contains a segment link */
|
---|
2446 | static int has_segment_link(mstate m, msegmentptr ss) {
|
---|
2447 | msegmentptr sp = &m->seg;
|
---|
2448 | for (;;) {
|
---|
2449 | if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
|
---|
2450 | return 1;
|
---|
2451 | if ((sp = sp->next) == 0)
|
---|
2452 | return 0;
|
---|
2453 | }
|
---|
2454 | }
|
---|
2455 |
|
---|
2456 | #ifndef MORECORE_CANNOT_TRIM
|
---|
2457 | #define should_trim(M,s) ((s) > (M)->trim_check)
|
---|
2458 | #else /* MORECORE_CANNOT_TRIM */
|
---|
2459 | #define should_trim(M,s) (0)
|
---|
2460 | #endif /* MORECORE_CANNOT_TRIM */
|
---|
2461 |
|
---|
2462 | /*
|
---|
2463 | TOP_FOOT_SIZE is padding at the end of a segment, including space
|
---|
2464 | that may be needed to place segment records and fenceposts when new
|
---|
2465 | noncontiguous segments are added.
|
---|
2466 | */
|
---|
2467 | #define TOP_FOOT_SIZE\
|
---|
2468 | (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
|
---|
2469 |
|
---|
2470 |
|
---|
2471 | /* ------------------------------- Hooks -------------------------------- */
|
---|
2472 |
|
---|
2473 | /*
|
---|
2474 | PREACTION should be defined to return 0 on success, and nonzero on
|
---|
2475 | failure. If you are not using locking, you can redefine these to do
|
---|
2476 | anything you like.
|
---|
2477 | */
|
---|
2478 |
|
---|
2479 | #if USE_LOCKS
|
---|
2480 |
|
---|
2481 | /* Ensure locks are initialized */
|
---|
2482 | #define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
|
---|
2483 |
|
---|
2484 | #define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
|
---|
2485 | #define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
|
---|
2486 | #else /* USE_LOCKS */
|
---|
2487 |
|
---|
2488 | #ifndef PREACTION
|
---|
2489 | #define PREACTION(M) (0)
|
---|
2490 | #endif /* PREACTION */
|
---|
2491 |
|
---|
2492 | #ifndef POSTACTION
|
---|
2493 | #define POSTACTION(M)
|
---|
2494 | #endif /* POSTACTION */
|
---|
2495 |
|
---|
2496 | #endif /* USE_LOCKS */
|
---|
2497 |
|
---|
2498 | /*
|
---|
2499 | CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
|
---|
2500 | USAGE_ERROR_ACTION is triggered on detected bad frees and
|
---|
2501 | reallocs. The argument p is an address that might have triggered the
|
---|
2502 | fault. It is ignored by the two predefined actions, but might be
|
---|
2503 | useful in custom actions that try to help diagnose errors.
|
---|
2504 | */
|
---|
2505 |
|
---|
2506 | #if PROCEED_ON_ERROR
|
---|
2507 |
|
---|
2508 | /* A count of the number of corruption errors causing resets */
|
---|
2509 | int malloc_corruption_error_count;
|
---|
2510 |
|
---|
2511 | /* default corruption action */
|
---|
2512 | static void reset_on_error(mstate m);
|
---|
2513 |
|
---|
2514 | #define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
|
---|
2515 | #define USAGE_ERROR_ACTION(m, p)
|
---|
2516 |
|
---|
2517 | #else /* PROCEED_ON_ERROR */
|
---|
2518 |
|
---|
2519 | #ifndef CORRUPTION_ERROR_ACTION
|
---|
2520 | #define CORRUPTION_ERROR_ACTION(m) ABORT
|
---|
2521 | #endif /* CORRUPTION_ERROR_ACTION */
|
---|
2522 |
|
---|
2523 | #ifndef USAGE_ERROR_ACTION
|
---|
2524 | #define USAGE_ERROR_ACTION(m,p) ABORT
|
---|
2525 | #endif /* USAGE_ERROR_ACTION */
|
---|
2526 |
|
---|
2527 | #endif /* PROCEED_ON_ERROR */
|
---|
2528 |
|
---|
2529 | /* -------------------------- Debugging setup ---------------------------- */
|
---|
2530 |
|
---|
2531 | #if ! DEBUG
|
---|
2532 |
|
---|
2533 | #define check_free_chunk(M,P)
|
---|
2534 | #define check_inuse_chunk(M,P)
|
---|
2535 | #define check_malloced_chunk(M,P,N)
|
---|
2536 | #define check_mmapped_chunk(M,P)
|
---|
2537 | #define check_malloc_state(M)
|
---|
2538 | #define check_top_chunk(M,P)
|
---|
2539 |
|
---|
2540 | #else /* DEBUG */
|
---|
2541 | #define check_free_chunk(M,P) do_check_free_chunk(M,P)
|
---|
2542 | #define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
|
---|
2543 | #define check_top_chunk(M,P) do_check_top_chunk(M,P)
|
---|
2544 | #define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
|
---|
2545 | #define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
|
---|
2546 | #define check_malloc_state(M) do_check_malloc_state(M)
|
---|
2547 |
|
---|
2548 | static void do_check_any_chunk(mstate m, mchunkptr p);
|
---|
2549 | static void do_check_top_chunk(mstate m, mchunkptr p);
|
---|
2550 | static void do_check_mmapped_chunk(mstate m, mchunkptr p);
|
---|
2551 | static void do_check_inuse_chunk(mstate m, mchunkptr p);
|
---|
2552 | static void do_check_free_chunk(mstate m, mchunkptr p);
|
---|
2553 | static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
|
---|
2554 | static void do_check_tree(mstate m, tchunkptr t);
|
---|
2555 | static void do_check_treebin(mstate m, bindex_t i);
|
---|
2556 | static void do_check_smallbin(mstate m, bindex_t i);
|
---|
2557 | static void do_check_malloc_state(mstate m);
|
---|
2558 | static int bin_find(mstate m, mchunkptr x);
|
---|
2559 | static size_t traverse_and_check(mstate m);
|
---|
2560 | #endif /* DEBUG */
|
---|
2561 |
|
---|
2562 | /* ---------------------------- Indexing Bins ---------------------------- */
|
---|
2563 |
|
---|
2564 | #define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
|
---|
2565 | #define small_index(s) ((s) >> SMALLBIN_SHIFT)
|
---|
2566 | #define small_index2size(i) ((i) << SMALLBIN_SHIFT)
|
---|
2567 | #define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
|
---|
2568 |
|
---|
2569 | /* addressing by index. See above about smallbin repositioning */
|
---|
2570 | #define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
|
---|
2571 | #define treebin_at(M,i) (&((M)->treebins[i]))
|
---|
2572 |
|
---|
2573 | /* assign tree index for size S to variable I */
|
---|
2574 | #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
|
---|
2575 | #define compute_tree_index(S, I)\
|
---|
2576 | {\
|
---|
2577 | unsigned int X = S >> TREEBIN_SHIFT;\
|
---|
2578 | if (X == 0)\
|
---|
2579 | I = 0;\
|
---|
2580 | else if (X > 0xFFFF)\
|
---|
2581 | I = NTREEBINS-1;\
|
---|
2582 | else {\
|
---|
2583 | unsigned int K;\
|
---|
2584 | __asm__("bsrl\t%1, %0\n\t" : "=r" (K) : "g" (X));\
|
---|
2585 | I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
|
---|
2586 | }\
|
---|
2587 | }
|
---|
2588 |
|
---|
2589 | #elif defined(_MSC_VER) && _MSC_VER>=1300
|
---|
2590 | #define compute_tree_index(S, I)\
|
---|
2591 | {\
|
---|
2592 | size_t X = S >> TREEBIN_SHIFT;\
|
---|
2593 | if (X == 0)\
|
---|
2594 | I = 0;\
|
---|
2595 | else if (X > 0xFFFF)\
|
---|
2596 | I = NTREEBINS-1;\
|
---|
2597 | else {\
|
---|
2598 | unsigned int K;\
|
---|
2599 | _BitScanReverse((DWORD *) &K, X);\
|
---|
2600 | I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
|
---|
2601 | }\
|
---|
2602 | }
|
---|
2603 | #else /* GNUC */
|
---|
2604 | #define compute_tree_index(S, I)\
|
---|
2605 | {\
|
---|
2606 | size_t X = S >> TREEBIN_SHIFT;\
|
---|
2607 | if (X == 0)\
|
---|
2608 | I = 0;\
|
---|
2609 | else if (X > 0xFFFF)\
|
---|
2610 | I = NTREEBINS-1;\
|
---|
2611 | else {\
|
---|
2612 | unsigned int Y = (unsigned int)X;\
|
---|
2613 | unsigned int N = ((Y - 0x100) >> 16) & 8;\
|
---|
2614 | unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
|
---|
2615 | N += K;\
|
---|
2616 | N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
|
---|
2617 | K = 14 - N + ((Y <<= K) >> 15);\
|
---|
2618 | I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
|
---|
2619 | }\
|
---|
2620 | }
|
---|
2621 | #endif /* GNUC */
|
---|
2622 |
|
---|
2623 | /* Bit representing maximum resolved size in a treebin at i */
|
---|
2624 | #define bit_for_tree_index(i) \
|
---|
2625 | (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
|
---|
2626 |
|
---|
2627 | /* Shift placing maximum resolved bit in a treebin at i as sign bit */
|
---|
2628 | #define leftshift_for_tree_index(i) \
|
---|
2629 | ((i == NTREEBINS-1)? 0 : \
|
---|
2630 | ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
|
---|
2631 |
|
---|
2632 | /* The size of the smallest chunk held in bin with index i */
|
---|
2633 | #define minsize_for_tree_index(i) \
|
---|
2634 | ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
|
---|
2635 | (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
|
---|
2636 |
|
---|
2637 |
|
---|
2638 | /* ------------------------ Operations on bin maps ----------------------- */
|
---|
2639 |
|
---|
2640 | /* bit corresponding to given index */
|
---|
2641 | #define idx2bit(i) ((binmap_t)(1) << (i))
|
---|
2642 |
|
---|
2643 | /* Mark/Clear bits with given index */
|
---|
2644 | #define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
|
---|
2645 | #define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
|
---|
2646 | #define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
|
---|
2647 |
|
---|
2648 | #define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
|
---|
2649 | #define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
|
---|
2650 | #define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
|
---|
2651 |
|
---|
2652 | /* index corresponding to given bit */
|
---|
2653 |
|
---|
2654 | #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
|
---|
2655 | #define compute_bit2idx(X, I)\
|
---|
2656 | {\
|
---|
2657 | unsigned int J;\
|
---|
2658 | __asm__("bsfl\t%1, %0\n\t" : "=r" (J) : "g" (X));\
|
---|
2659 | I = (bindex_t)J;\
|
---|
2660 | }
|
---|
2661 | #elif defined(_MSC_VER) && _MSC_VER>=1300
|
---|
2662 | #define compute_bit2idx(X, I)\
|
---|
2663 | {\
|
---|
2664 | unsigned int J;\
|
---|
2665 | _BitScanForward((DWORD *) &J, X);\
|
---|
2666 | I = (bindex_t)J;\
|
---|
2667 | }
|
---|
2668 |
|
---|
2669 | #else /* GNUC */
|
---|
2670 | #if USE_BUILTIN_FFS
|
---|
2671 | #define compute_bit2idx(X, I) I = ffs(X)-1
|
---|
2672 |
|
---|
2673 | #else /* USE_BUILTIN_FFS */
|
---|
2674 | #define compute_bit2idx(X, I)\
|
---|
2675 | {\
|
---|
2676 | unsigned int Y = X - 1;\
|
---|
2677 | unsigned int K = Y >> (16-4) & 16;\
|
---|
2678 | unsigned int N = K; Y >>= K;\
|
---|
2679 | N += K = Y >> (8-3) & 8; Y >>= K;\
|
---|
2680 | N += K = Y >> (4-2) & 4; Y >>= K;\
|
---|
2681 | N += K = Y >> (2-1) & 2; Y >>= K;\
|
---|
2682 | N += K = Y >> (1-0) & 1; Y >>= K;\
|
---|
2683 | I = (bindex_t)(N + Y);\
|
---|
2684 | }
|
---|
2685 | #endif /* USE_BUILTIN_FFS */
|
---|
2686 | #endif /* GNUC */
|
---|
2687 |
|
---|
2688 | /* isolate the least set bit of a bitmap */
|
---|
2689 | #define least_bit(x) ((x) & -(x))
|
---|
2690 |
|
---|
2691 | /* mask with all bits to left of least bit of x on */
|
---|
2692 | #define left_bits(x) ((x<<1) | -(x<<1))
|
---|
2693 |
|
---|
2694 | /* mask with all bits to left of or equal to least bit of x on */
|
---|
2695 | #define same_or_left_bits(x) ((x) | -(x))
|
---|
2696 |
|
---|
2697 |
|
---|
2698 | /* ----------------------- Runtime Check Support ------------------------- */
|
---|
2699 |
|
---|
2700 | /*
|
---|
2701 | For security, the main invariant is that malloc/free/etc never
|
---|
2702 | writes to a static address other than malloc_state, unless static
|
---|
2703 | malloc_state itself has been corrupted, which cannot occur via
|
---|
2704 | malloc (because of these checks). In essence this means that we
|
---|
2705 | believe all pointers, sizes, maps etc held in malloc_state, but
|
---|
2706 | check all of those linked or offsetted from other embedded data
|
---|
2707 | structures. These checks are interspersed with main code in a way
|
---|
2708 | that tends to minimize their run-time cost.
|
---|
2709 |
|
---|
2710 | When FOOTERS is defined, in addition to range checking, we also
|
---|
2711 | verify footer fields of inuse chunks, which can be used guarantee
|
---|
2712 | that the mstate controlling malloc/free is intact. This is a
|
---|
2713 | streamlined version of the approach described by William Robertson
|
---|
2714 | et al in "Run-time Detection of Heap-based Overflows" LISA'03
|
---|
2715 | http://www.usenix.org/events/lisa03/tech/robertson.html The footer
|
---|
2716 | of an inuse chunk holds the xor of its mstate and a random seed,
|
---|
2717 | that is checked upon calls to free() and realloc(). This is
|
---|
2718 | (probablistically) unguessable from outside the program, but can be
|
---|
2719 | computed by any code successfully malloc'ing any chunk, so does not
|
---|
2720 | itself provide protection against code that has already broken
|
---|
2721 | security through some other means. Unlike Robertson et al, we
|
---|
2722 | always dynamically check addresses of all offset chunks (previous,
|
---|
2723 | next, etc). This turns out to be cheaper than relying on hashes.
|
---|
2724 | */
|
---|
2725 |
|
---|
2726 | #if !INSECURE
|
---|
2727 | /* Check if address a is at least as high as any from MORECORE or MMAP */
|
---|
2728 | #define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
|
---|
2729 | /* Check if address of next chunk n is higher than base chunk p */
|
---|
2730 | #define ok_next(p, n) ((char*)(p) < (char*)(n))
|
---|
2731 | /* Check if p has its cinuse bit on */
|
---|
2732 | #define ok_cinuse(p) cinuse(p)
|
---|
2733 | /* Check if p has its pinuse bit on */
|
---|
2734 | #define ok_pinuse(p) pinuse(p)
|
---|
2735 |
|
---|
2736 | #else /* !INSECURE */
|
---|
2737 | #define ok_address(M, a) (1)
|
---|
2738 | #define ok_next(b, n) (1)
|
---|
2739 | #define ok_cinuse(p) (1)
|
---|
2740 | #define ok_pinuse(p) (1)
|
---|
2741 | #endif /* !INSECURE */
|
---|
2742 |
|
---|
2743 | #if (FOOTERS && !INSECURE)
|
---|
2744 | /* Check if (alleged) mstate m has expected magic field */
|
---|
2745 | #define ok_magic(M) ((M)->magic == mparams.magic)
|
---|
2746 | #else /* (FOOTERS && !INSECURE) */
|
---|
2747 | #define ok_magic(M) (1)
|
---|
2748 | #endif /* (FOOTERS && !INSECURE) */
|
---|
2749 |
|
---|
2750 |
|
---|
2751 | /* In gcc, use __builtin_expect to minimize impact of checks */
|
---|
2752 | #if !INSECURE
|
---|
2753 | #if defined(__GNUC__) && __GNUC__ >= 3
|
---|
2754 | #define RTCHECK(e) __builtin_expect(e, 1)
|
---|
2755 | #else /* GNUC */
|
---|
2756 | #define RTCHECK(e) (e)
|
---|
2757 | #endif /* GNUC */
|
---|
2758 | #else /* !INSECURE */
|
---|
2759 | #define RTCHECK(e) (1)
|
---|
2760 | #endif /* !INSECURE */
|
---|
2761 |
|
---|
2762 | /* macros to set up inuse chunks with or without footers */
|
---|
2763 |
|
---|
2764 | #if !FOOTERS
|
---|
2765 |
|
---|
2766 | #define mark_inuse_foot(M,p,s)
|
---|
2767 |
|
---|
2768 | /* Set cinuse bit and pinuse bit of next chunk */
|
---|
2769 | #define set_inuse(M,p,s)\
|
---|
2770 | ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
|
---|
2771 | ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
|
---|
2772 |
|
---|
2773 | /* Set cinuse and pinuse of this chunk and pinuse of next chunk */
|
---|
2774 | #define set_inuse_and_pinuse(M,p,s)\
|
---|
2775 | ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
|
---|
2776 | ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
|
---|
2777 |
|
---|
2778 | /* Set size, cinuse and pinuse bit of this chunk */
|
---|
2779 | #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
|
---|
2780 | ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
|
---|
2781 |
|
---|
2782 | #else /* FOOTERS */
|
---|
2783 |
|
---|
2784 | /* Set foot of inuse chunk to be xor of mstate and seed */
|
---|
2785 | #define mark_inuse_foot(M,p,s)\
|
---|
2786 | (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
|
---|
2787 |
|
---|
2788 | #define get_mstate_for(p)\
|
---|
2789 | ((mstate)(((mchunkptr)((char*)(p) +\
|
---|
2790 | (chunksize(p))))->prev_foot ^ mparams.magic))
|
---|
2791 |
|
---|
2792 | #define set_inuse(M,p,s)\
|
---|
2793 | ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
|
---|
2794 | (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
|
---|
2795 | mark_inuse_foot(M,p,s))
|
---|
2796 |
|
---|
2797 | #define set_inuse_and_pinuse(M,p,s)\
|
---|
2798 | ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
|
---|
2799 | (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
|
---|
2800 | mark_inuse_foot(M,p,s))
|
---|
2801 |
|
---|
2802 | #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
|
---|
2803 | ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
|
---|
2804 | mark_inuse_foot(M, p, s))
|
---|
2805 |
|
---|
2806 | #endif /* !FOOTERS */
|
---|
2807 |
|
---|
2808 | /* ---------------------------- setting mparams -------------------------- */
|
---|
2809 |
|
---|
2810 | /* Initialize mparams */
|
---|
2811 | static int init_mparams(void) {
|
---|
2812 | if (mparams.page_size == 0) {
|
---|
2813 | size_t s;
|
---|
2814 |
|
---|
2815 | mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
|
---|
2816 | mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
|
---|
2817 | #if MORECORE_CONTIGUOUS
|
---|
2818 | mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
|
---|
2819 | #else /* MORECORE_CONTIGUOUS */
|
---|
2820 | mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
|
---|
2821 | #endif /* MORECORE_CONTIGUOUS */
|
---|
2822 |
|
---|
2823 | #if (FOOTERS && !INSECURE)
|
---|
2824 | {
|
---|
2825 | #if USE_DEV_RANDOM
|
---|
2826 | int fd;
|
---|
2827 | unsigned char buf[sizeof(size_t)];
|
---|
2828 | /* Try to use /dev/urandom, else fall back on using time */
|
---|
2829 | if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
|
---|
2830 | read(fd, buf, sizeof(buf)) == sizeof(buf)) {
|
---|
2831 | s = *((size_t *) buf);
|
---|
2832 | close(fd);
|
---|
2833 | }
|
---|
2834 | else
|
---|
2835 | #endif /* USE_DEV_RANDOM */
|
---|
2836 | s = (size_t)(time(0) ^ (size_t)0x55555555U);
|
---|
2837 |
|
---|
2838 | s |= (size_t)8U; /* ensure nonzero */
|
---|
2839 | s &= ~(size_t)7U; /* improve chances of fault for bad values */
|
---|
2840 |
|
---|
2841 | }
|
---|
2842 | #else /* (FOOTERS && !INSECURE) */
|
---|
2843 | s = (size_t)0x58585858U;
|
---|
2844 | #endif /* (FOOTERS && !INSECURE) */
|
---|
2845 | ACQUIRE_MAGIC_INIT_LOCK();
|
---|
2846 | if (mparams.magic == 0) {
|
---|
2847 | mparams.magic = s;
|
---|
2848 | #if !ONLY_MSPACES
|
---|
2849 | /* Set up lock for main malloc area */
|
---|
2850 | INITIAL_LOCK(&gm->mutex);
|
---|
2851 | gm->mflags = mparams.default_mflags;
|
---|
2852 | #endif
|
---|
2853 | }
|
---|
2854 | RELEASE_MAGIC_INIT_LOCK();
|
---|
2855 |
|
---|
2856 | #ifndef WIN32
|
---|
2857 | mparams.page_size = malloc_getpagesize;
|
---|
2858 | mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
|
---|
2859 | DEFAULT_GRANULARITY : mparams.page_size);
|
---|
2860 | #else /* WIN32 */
|
---|
2861 | {
|
---|
2862 | SYSTEM_INFO system_info;
|
---|
2863 | GetSystemInfo(&system_info);
|
---|
2864 | mparams.page_size = system_info.dwPageSize;
|
---|
2865 | mparams.granularity = system_info.dwAllocationGranularity;
|
---|
2866 | }
|
---|
2867 | #endif /* WIN32 */
|
---|
2868 |
|
---|
2869 | /* Sanity-check configuration:
|
---|
2870 | size_t must be unsigned and as wide as pointer type.
|
---|
2871 | ints must be at least 4 bytes.
|
---|
2872 | alignment must be at least 8.
|
---|
2873 | Alignment, min chunk size, and page size must all be powers of 2.
|
---|
2874 | */
|
---|
2875 | if ((sizeof(size_t) != sizeof(char*)) ||
|
---|
2876 | (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
|
---|
2877 | (sizeof(int) < 4) ||
|
---|
2878 | (MALLOC_ALIGNMENT < (size_t)8U) ||
|
---|
2879 | ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
|
---|
2880 | ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
|
---|
2881 | ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
|
---|
2882 | ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0))
|
---|
2883 | ABORT;
|
---|
2884 | }
|
---|
2885 | return 0;
|
---|
2886 | }
|
---|
2887 |
|
---|
2888 | /* support for mallopt */
|
---|
2889 | static int change_mparam(int param_number, int value) {
|
---|
2890 | size_t val = (size_t)value;
|
---|
2891 | init_mparams();
|
---|
2892 | switch(param_number) {
|
---|
2893 | case M_TRIM_THRESHOLD:
|
---|
2894 | mparams.trim_threshold = val;
|
---|
2895 | return 1;
|
---|
2896 | case M_GRANULARITY:
|
---|
2897 | if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
|
---|
2898 | mparams.granularity = val;
|
---|
2899 | return 1;
|
---|
2900 | }
|
---|
2901 | else
|
---|
2902 | return 0;
|
---|
2903 | case M_MMAP_THRESHOLD:
|
---|
2904 | mparams.mmap_threshold = val;
|
---|
2905 | return 1;
|
---|
2906 | default:
|
---|
2907 | return 0;
|
---|
2908 | }
|
---|
2909 | }
|
---|
2910 |
|
---|
2911 | #if DEBUG
|
---|
2912 | /* ------------------------- Debugging Support --------------------------- */
|
---|
2913 |
|
---|
2914 | /* Check properties of any chunk, whether free, inuse, mmapped etc */
|
---|
2915 | static void do_check_any_chunk(mstate m, mchunkptr p) {
|
---|
2916 | assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
|
---|
2917 | assert(ok_address(m, p));
|
---|
2918 | }
|
---|
2919 |
|
---|
2920 | /* Check properties of top chunk */
|
---|
2921 | static void do_check_top_chunk(mstate m, mchunkptr p) {
|
---|
2922 | msegmentptr sp = segment_holding(m, (char*)p);
|
---|
2923 | size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */
|
---|
2924 | assert(sp != 0);
|
---|
2925 | assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
|
---|
2926 | assert(ok_address(m, p));
|
---|
2927 | assert(sz == m->topsize);
|
---|
2928 | assert(sz > 0);
|
---|
2929 | assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
|
---|
2930 | assert(pinuse(p));
|
---|
2931 | assert(!pinuse(chunk_plus_offset(p, sz)));
|
---|
2932 | }
|
---|
2933 |
|
---|
2934 | /* Check properties of (inuse) mmapped chunks */
|
---|
2935 | static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
|
---|
2936 | size_t sz = chunksize(p);
|
---|
2937 | size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
|
---|
2938 | assert(is_mmapped(p));
|
---|
2939 | assert(use_mmap(m));
|
---|
2940 | assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
|
---|
2941 | assert(ok_address(m, p));
|
---|
2942 | assert(!is_small(sz));
|
---|
2943 | assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
|
---|
2944 | assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
|
---|
2945 | assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
|
---|
2946 | }
|
---|
2947 |
|
---|
2948 | /* Check properties of inuse chunks */
|
---|
2949 | static void do_check_inuse_chunk(mstate m, mchunkptr p) {
|
---|
2950 | do_check_any_chunk(m, p);
|
---|
2951 | assert(cinuse(p));
|
---|
2952 | assert(next_pinuse(p));
|
---|
2953 | /* If not pinuse and not mmapped, previous chunk has OK offset */
|
---|
2954 | assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
|
---|
2955 | if (is_mmapped(p))
|
---|
2956 | do_check_mmapped_chunk(m, p);
|
---|
2957 | }
|
---|
2958 |
|
---|
2959 | /* Check properties of free chunks */
|
---|
2960 | static void do_check_free_chunk(mstate m, mchunkptr p) {
|
---|
2961 | size_t sz = chunksize(p);
|
---|
2962 | mchunkptr next = chunk_plus_offset(p, sz);
|
---|
2963 | do_check_any_chunk(m, p);
|
---|
2964 | assert(!cinuse(p));
|
---|
2965 | assert(!next_pinuse(p));
|
---|
2966 | assert (!is_mmapped(p));
|
---|
2967 | if (p != m->dv && p != m->top) {
|
---|
2968 | if (sz >= MIN_CHUNK_SIZE) {
|
---|
2969 | assert((sz & CHUNK_ALIGN_MASK) == 0);
|
---|
2970 | assert(is_aligned(chunk2mem(p)));
|
---|
2971 | assert(next->prev_foot == sz);
|
---|
2972 | assert(pinuse(p));
|
---|
2973 | assert (next == m->top || cinuse(next));
|
---|
2974 | assert(p->fd->bk == p);
|
---|
2975 | assert(p->bk->fd == p);
|
---|
2976 | }
|
---|
2977 | else /* markers are always of size SIZE_T_SIZE */
|
---|
2978 | assert(sz == SIZE_T_SIZE);
|
---|
2979 | }
|
---|
2980 | }
|
---|
2981 |
|
---|
2982 | /* Check properties of malloced chunks at the point they are malloced */
|
---|
2983 | static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
|
---|
2984 | if (mem != 0) {
|
---|
2985 | mchunkptr p = mem2chunk(mem);
|
---|
2986 | size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
|
---|
2987 | do_check_inuse_chunk(m, p);
|
---|
2988 | assert((sz & CHUNK_ALIGN_MASK) == 0);
|
---|
2989 | assert(sz >= MIN_CHUNK_SIZE);
|
---|
2990 | assert(sz >= s);
|
---|
2991 | /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
|
---|
2992 | assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
|
---|
2993 | }
|
---|
2994 | }
|
---|
2995 |
|
---|
2996 | /* Check a tree and its subtrees. */
|
---|
2997 | static void do_check_tree(mstate m, tchunkptr t) {
|
---|
2998 | tchunkptr head = 0;
|
---|
2999 | tchunkptr u = t;
|
---|
3000 | bindex_t tindex = t->index;
|
---|
3001 | size_t tsize = chunksize(t);
|
---|
3002 | bindex_t idx;
|
---|
3003 | compute_tree_index(tsize, idx);
|
---|
3004 | assert(tindex == idx);
|
---|
3005 | assert(tsize >= MIN_LARGE_SIZE);
|
---|
3006 | assert(tsize >= minsize_for_tree_index(idx));
|
---|
3007 | assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
|
---|
3008 |
|
---|
3009 | do { /* traverse through chain of same-sized nodes */
|
---|
3010 | do_check_any_chunk(m, ((mchunkptr)u));
|
---|
3011 | assert(u->index == tindex);
|
---|
3012 | assert(chunksize(u) == tsize);
|
---|
3013 | assert(!cinuse(u));
|
---|
3014 | assert(!next_pinuse(u));
|
---|
3015 | assert(u->fd->bk == u);
|
---|
3016 | assert(u->bk->fd == u);
|
---|
3017 | if (u->parent == 0) {
|
---|
3018 | assert(u->child[0] == 0);
|
---|
3019 | assert(u->child[1] == 0);
|
---|
3020 | }
|
---|
3021 | else {
|
---|
3022 | assert(head == 0); /* only one node on chain has parent */
|
---|
3023 | head = u;
|
---|
3024 | assert(u->parent != u);
|
---|
3025 | assert (u->parent->child[0] == u ||
|
---|
3026 | u->parent->child[1] == u ||
|
---|
3027 | *((tbinptr*)(u->parent)) == u);
|
---|
3028 | if (u->child[0] != 0) {
|
---|
3029 | assert(u->child[0]->parent == u);
|
---|
3030 | assert(u->child[0] != u);
|
---|
3031 | do_check_tree(m, u->child[0]);
|
---|
3032 | }
|
---|
3033 | if (u->child[1] != 0) {
|
---|
3034 | assert(u->child[1]->parent == u);
|
---|
3035 | assert(u->child[1] != u);
|
---|
3036 | do_check_tree(m, u->child[1]);
|
---|
3037 | }
|
---|
3038 | if (u->child[0] != 0 && u->child[1] != 0) {
|
---|
3039 | assert(chunksize(u->child[0]) < chunksize(u->child[1]));
|
---|
3040 | }
|
---|
3041 | }
|
---|
3042 | u = u->fd;
|
---|
3043 | } while (u != t);
|
---|
3044 | assert(head != 0);
|
---|
3045 | }
|
---|
3046 |
|
---|
3047 | /* Check all the chunks in a treebin. */
|
---|
3048 | static void do_check_treebin(mstate m, bindex_t i) {
|
---|
3049 | tbinptr* tb = treebin_at(m, i);
|
---|
3050 | tchunkptr t = *tb;
|
---|
3051 | int empty = (m->treemap & (1U << i)) == 0;
|
---|
3052 | if (t == 0)
|
---|
3053 | assert(empty);
|
---|
3054 | if (!empty)
|
---|
3055 | do_check_tree(m, t);
|
---|
3056 | }
|
---|
3057 |
|
---|
3058 | /* Check all the chunks in a smallbin. */
|
---|
3059 | static void do_check_smallbin(mstate m, bindex_t i) {
|
---|
3060 | sbinptr b = smallbin_at(m, i);
|
---|
3061 | mchunkptr p = b->bk;
|
---|
3062 | unsigned int empty = (m->smallmap & (1U << i)) == 0;
|
---|
3063 | if (p == b)
|
---|
3064 | assert(empty);
|
---|
3065 | if (!empty) {
|
---|
3066 | for (; p != b; p = p->bk) {
|
---|
3067 | size_t size = chunksize(p);
|
---|
3068 | mchunkptr q;
|
---|
3069 | /* each chunk claims to be free */
|
---|
3070 | do_check_free_chunk(m, p);
|
---|
3071 | /* chunk belongs in bin */
|
---|
3072 | assert(small_index(size) == i);
|
---|
3073 | assert(p->bk == b || chunksize(p->bk) == chunksize(p));
|
---|
3074 | /* chunk is followed by an inuse chunk */
|
---|
3075 | q = next_chunk(p);
|
---|
3076 | if (q->head != FENCEPOST_HEAD)
|
---|
3077 | do_check_inuse_chunk(m, q);
|
---|
3078 | }
|
---|
3079 | }
|
---|
3080 | }
|
---|
3081 |
|
---|
3082 | /* Find x in a bin. Used in other check functions. */
|
---|
3083 | static int bin_find(mstate m, mchunkptr x) {
|
---|
3084 | size_t size = chunksize(x);
|
---|
3085 | if (is_small(size)) {
|
---|
3086 | bindex_t sidx = small_index(size);
|
---|
3087 | sbinptr b = smallbin_at(m, sidx);
|
---|
3088 | if (smallmap_is_marked(m, sidx)) {
|
---|
3089 | mchunkptr p = b;
|
---|
3090 | do {
|
---|
3091 | if (p == x)
|
---|
3092 | return 1;
|
---|
3093 | } while ((p = p->fd) != b);
|
---|
3094 | }
|
---|
3095 | }
|
---|
3096 | else {
|
---|
3097 | bindex_t tidx;
|
---|
3098 | compute_tree_index(size, tidx);
|
---|
3099 | if (treemap_is_marked(m, tidx)) {
|
---|
3100 | tchunkptr t = *treebin_at(m, tidx);
|
---|
3101 | size_t sizebits = size << leftshift_for_tree_index(tidx);
|
---|
3102 | while (t != 0 && chunksize(t) != size) {
|
---|
3103 | t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
|
---|
3104 | sizebits <<= 1;
|
---|
3105 | }
|
---|
3106 | if (t != 0) {
|
---|
3107 | tchunkptr u = t;
|
---|
3108 | do {
|
---|
3109 | if (u == (tchunkptr)x)
|
---|
3110 | return 1;
|
---|
3111 | } while ((u = u->fd) != t);
|
---|
3112 | }
|
---|
3113 | }
|
---|
3114 | }
|
---|
3115 | return 0;
|
---|
3116 | }
|
---|
3117 |
|
---|
3118 | /* Traverse each chunk and check it; return total */
|
---|
3119 | static size_t traverse_and_check(mstate m) {
|
---|
3120 | size_t sum = 0;
|
---|
3121 | if (is_initialized(m)) {
|
---|
3122 | msegmentptr s = &m->seg;
|
---|
3123 | sum += m->topsize + TOP_FOOT_SIZE;
|
---|
3124 | while (s != 0) {
|
---|
3125 | mchunkptr q = align_as_chunk(s->base);
|
---|
3126 | mchunkptr lastq = 0;
|
---|
3127 | assert(pinuse(q));
|
---|
3128 | while (segment_holds(s, q) &&
|
---|
3129 | q != m->top && q->head != FENCEPOST_HEAD) {
|
---|
3130 | sum += chunksize(q);
|
---|
3131 | if (cinuse(q)) {
|
---|
3132 | assert(!bin_find(m, q));
|
---|
3133 | do_check_inuse_chunk(m, q);
|
---|
3134 | }
|
---|
3135 | else {
|
---|
3136 | assert(q == m->dv || bin_find(m, q));
|
---|
3137 | assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
|
---|
3138 | do_check_free_chunk(m, q);
|
---|
3139 | }
|
---|
3140 | lastq = q;
|
---|
3141 | q = next_chunk(q);
|
---|
3142 | }
|
---|
3143 | s = s->next;
|
---|
3144 | }
|
---|
3145 | }
|
---|
3146 | return sum;
|
---|
3147 | }
|
---|
3148 |
|
---|
3149 | /* Check all properties of malloc_state. */
|
---|
3150 | static void do_check_malloc_state(mstate m) {
|
---|
3151 | bindex_t i;
|
---|
3152 | size_t total;
|
---|
3153 | /* check bins */
|
---|
3154 | for (i = 0; i < NSMALLBINS; ++i)
|
---|
3155 | do_check_smallbin(m, i);
|
---|
3156 | for (i = 0; i < NTREEBINS; ++i)
|
---|
3157 | do_check_treebin(m, i);
|
---|
3158 |
|
---|
3159 | if (m->dvsize != 0) { /* check dv chunk */
|
---|
3160 | do_check_any_chunk(m, m->dv);
|
---|
3161 | assert(m->dvsize == chunksize(m->dv));
|
---|
3162 | assert(m->dvsize >= MIN_CHUNK_SIZE);
|
---|
3163 | assert(bin_find(m, m->dv) == 0);
|
---|
3164 | }
|
---|
3165 |
|
---|
3166 | if (m->top != 0) { /* check top chunk */
|
---|
3167 | do_check_top_chunk(m, m->top);
|
---|
3168 | /*assert(m->topsize == chunksize(m->top)); redundant */
|
---|
3169 | assert(m->topsize > 0);
|
---|
3170 | assert(bin_find(m, m->top) == 0);
|
---|
3171 | }
|
---|
3172 |
|
---|
3173 | total = traverse_and_check(m);
|
---|
3174 | assert(total <= m->footprint);
|
---|
3175 | assert(m->footprint <= m->max_footprint);
|
---|
3176 | }
|
---|
3177 | #endif /* DEBUG */
|
---|
3178 |
|
---|
3179 | /* ----------------------------- statistics ------------------------------ */
|
---|
3180 |
|
---|
3181 | #if !NO_MALLINFO
|
---|
3182 | static struct mallinfo internal_mallinfo(mstate m) {
|
---|
3183 | struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
---|
3184 | if (!PREACTION(m)) {
|
---|
3185 | check_malloc_state(m);
|
---|
3186 | if (is_initialized(m)) {
|
---|
3187 | size_t nfree = SIZE_T_ONE; /* top always free */
|
---|
3188 | size_t mfree = m->topsize + TOP_FOOT_SIZE;
|
---|
3189 | size_t sum = mfree;
|
---|
3190 | msegmentptr s = &m->seg;
|
---|
3191 | while (s != 0) {
|
---|
3192 | mchunkptr q = align_as_chunk(s->base);
|
---|
3193 | while (segment_holds(s, q) &&
|
---|
3194 | q != m->top && q->head != FENCEPOST_HEAD) {
|
---|
3195 | size_t sz = chunksize(q);
|
---|
3196 | sum += sz;
|
---|
3197 | if (!cinuse(q)) {
|
---|
3198 | mfree += sz;
|
---|
3199 | ++nfree;
|
---|
3200 | }
|
---|
3201 | q = next_chunk(q);
|
---|
3202 | }
|
---|
3203 | s = s->next;
|
---|
3204 | }
|
---|
3205 |
|
---|
3206 | nm.arena = sum;
|
---|
3207 | nm.ordblks = nfree;
|
---|
3208 | nm.hblkhd = m->footprint - sum;
|
---|
3209 | nm.usmblks = m->max_footprint;
|
---|
3210 | nm.uordblks = m->footprint - mfree;
|
---|
3211 | nm.fordblks = mfree;
|
---|
3212 | nm.keepcost = m->topsize;
|
---|
3213 | }
|
---|
3214 |
|
---|
3215 | POSTACTION(m);
|
---|
3216 | }
|
---|
3217 | return nm;
|
---|
3218 | }
|
---|
3219 | #endif /* !NO_MALLINFO */
|
---|
3220 |
|
---|
3221 | static void internal_malloc_stats(mstate m) {
|
---|
3222 | if (!PREACTION(m)) {
|
---|
3223 | size_t maxfp = 0;
|
---|
3224 | size_t fp = 0;
|
---|
3225 | size_t used = 0;
|
---|
3226 | check_malloc_state(m);
|
---|
3227 | if (is_initialized(m)) {
|
---|
3228 | msegmentptr s = &m->seg;
|
---|
3229 | maxfp = m->max_footprint;
|
---|
3230 | fp = m->footprint;
|
---|
3231 | used = fp - (m->topsize + TOP_FOOT_SIZE);
|
---|
3232 |
|
---|
3233 | while (s != 0) {
|
---|
3234 | mchunkptr q = align_as_chunk(s->base);
|
---|
3235 | while (segment_holds(s, q) &&
|
---|
3236 | q != m->top && q->head != FENCEPOST_HEAD) {
|
---|
3237 | if (!cinuse(q))
|
---|
3238 | used -= chunksize(q);
|
---|
3239 | q = next_chunk(q);
|
---|
3240 | }
|
---|
3241 | s = s->next;
|
---|
3242 | }
|
---|
3243 | }
|
---|
3244 |
|
---|
3245 | fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
|
---|
3246 | fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
|
---|
3247 | fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
|
---|
3248 |
|
---|
3249 | POSTACTION(m);
|
---|
3250 | }
|
---|
3251 | }
|
---|
3252 |
|
---|
3253 | /* ----------------------- Operations on smallbins ----------------------- */
|
---|
3254 |
|
---|
3255 | /*
|
---|
3256 | Various forms of linking and unlinking are defined as macros. Even
|
---|
3257 | the ones for trees, which are very long but have very short typical
|
---|
3258 | paths. This is ugly but reduces reliance on inlining support of
|
---|
3259 | compilers.
|
---|
3260 | */
|
---|
3261 |
|
---|
3262 | /* Link a free chunk into a smallbin */
|
---|
3263 | #define insert_small_chunk(M, P, S) {\
|
---|
3264 | bindex_t I = small_index(S);\
|
---|
3265 | mchunkptr B = smallbin_at(M, I);\
|
---|
3266 | mchunkptr F = B;\
|
---|
3267 | assert(S >= MIN_CHUNK_SIZE);\
|
---|
3268 | if (!smallmap_is_marked(M, I))\
|
---|
3269 | mark_smallmap(M, I);\
|
---|
3270 | else if (RTCHECK(ok_address(M, B->fd)))\
|
---|
3271 | F = B->fd;\
|
---|
3272 | else {\
|
---|
3273 | CORRUPTION_ERROR_ACTION(M);\
|
---|
3274 | }\
|
---|
3275 | B->fd = P;\
|
---|
3276 | F->bk = P;\
|
---|
3277 | P->fd = F;\
|
---|
3278 | P->bk = B;\
|
---|
3279 | }
|
---|
3280 |
|
---|
3281 | /* Unlink a chunk from a smallbin */
|
---|
3282 | #define unlink_small_chunk(M, P, S) {\
|
---|
3283 | mchunkptr F = P->fd;\
|
---|
3284 | mchunkptr B = P->bk;\
|
---|
3285 | bindex_t I = small_index(S);\
|
---|
3286 | assert(P != B);\
|
---|
3287 | assert(P != F);\
|
---|
3288 | assert(chunksize(P) == small_index2size(I));\
|
---|
3289 | if (F == B)\
|
---|
3290 | clear_smallmap(M, I);\
|
---|
3291 | else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
|
---|
3292 | (B == smallbin_at(M,I) || ok_address(M, B)))) {\
|
---|
3293 | F->bk = B;\
|
---|
3294 | B->fd = F;\
|
---|
3295 | }\
|
---|
3296 | else {\
|
---|
3297 | CORRUPTION_ERROR_ACTION(M);\
|
---|
3298 | }\
|
---|
3299 | }
|
---|
3300 |
|
---|
3301 | /* Unlink the first chunk from a smallbin */
|
---|
3302 | #define unlink_first_small_chunk(M, B, P, I) {\
|
---|
3303 | mchunkptr F = P->fd;\
|
---|
3304 | assert(P != B);\
|
---|
3305 | assert(P != F);\
|
---|
3306 | assert(chunksize(P) == small_index2size(I));\
|
---|
3307 | if (B == F)\
|
---|
3308 | clear_smallmap(M, I);\
|
---|
3309 | else if (RTCHECK(ok_address(M, F))) {\
|
---|
3310 | B->fd = F;\
|
---|
3311 | F->bk = B;\
|
---|
3312 | }\
|
---|
3313 | else {\
|
---|
3314 | CORRUPTION_ERROR_ACTION(M);\
|
---|
3315 | }\
|
---|
3316 | }
|
---|
3317 |
|
---|
3318 | /* Replace dv node, binning the old one */
|
---|
3319 | /* Used only when dvsize known to be small */
|
---|
3320 | #define replace_dv(M, P, S) {\
|
---|
3321 | size_t DVS = M->dvsize;\
|
---|
3322 | if (DVS != 0) {\
|
---|
3323 | mchunkptr DV = M->dv;\
|
---|
3324 | assert(is_small(DVS));\
|
---|
3325 | insert_small_chunk(M, DV, DVS);\
|
---|
3326 | }\
|
---|
3327 | M->dvsize = S;\
|
---|
3328 | M->dv = P;\
|
---|
3329 | }
|
---|
3330 |
|
---|
3331 | /* ------------------------- Operations on trees ------------------------- */
|
---|
3332 |
|
---|
3333 | /* Insert chunk into tree */
|
---|
3334 | #define insert_large_chunk(M, X, S) {\
|
---|
3335 | tbinptr* H;\
|
---|
3336 | bindex_t I;\
|
---|
3337 | compute_tree_index(S, I);\
|
---|
3338 | H = treebin_at(M, I);\
|
---|
3339 | X->index = I;\
|
---|
3340 | X->child[0] = X->child[1] = 0;\
|
---|
3341 | if (!treemap_is_marked(M, I)) {\
|
---|
3342 | mark_treemap(M, I);\
|
---|
3343 | *H = X;\
|
---|
3344 | X->parent = (tchunkptr)H;\
|
---|
3345 | X->fd = X->bk = X;\
|
---|
3346 | }\
|
---|
3347 | else {\
|
---|
3348 | tchunkptr T = *H;\
|
---|
3349 | size_t K = S << leftshift_for_tree_index(I);\
|
---|
3350 | for (;;) {\
|
---|
3351 | if (chunksize(T) != S) {\
|
---|
3352 | tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
|
---|
3353 | K <<= 1;\
|
---|
3354 | if (*C != 0)\
|
---|
3355 | T = *C;\
|
---|
3356 | else if (RTCHECK(ok_address(M, C))) {\
|
---|
3357 | *C = X;\
|
---|
3358 | X->parent = T;\
|
---|
3359 | X->fd = X->bk = X;\
|
---|
3360 | break;\
|
---|
3361 | }\
|
---|
3362 | else {\
|
---|
3363 | CORRUPTION_ERROR_ACTION(M);\
|
---|
3364 | break;\
|
---|
3365 | }\
|
---|
3366 | }\
|
---|
3367 | else {\
|
---|
3368 | tchunkptr F = T->fd;\
|
---|
3369 | if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
|
---|
3370 | T->fd = F->bk = X;\
|
---|
3371 | X->fd = F;\
|
---|
3372 | X->bk = T;\
|
---|
3373 | X->parent = 0;\
|
---|
3374 | break;\
|
---|
3375 | }\
|
---|
3376 | else {\
|
---|
3377 | CORRUPTION_ERROR_ACTION(M);\
|
---|
3378 | break;\
|
---|
3379 | }\
|
---|
3380 | }\
|
---|
3381 | }\
|
---|
3382 | }\
|
---|
3383 | }
|
---|
3384 |
|
---|
3385 | /*
|
---|
3386 | Unlink steps:
|
---|
3387 |
|
---|
3388 | 1. If x is a chained node, unlink it from its same-sized fd/bk links
|
---|
3389 | and choose its bk node as its replacement.
|
---|
3390 | 2. If x was the last node of its size, but not a leaf node, it must
|
---|
3391 | be replaced with a leaf node (not merely one with an open left or
|
---|
3392 | right), to make sure that lefts and rights of descendents
|
---|
3393 | correspond properly to bit masks. We use the rightmost descendent
|
---|
3394 | of x. We could use any other leaf, but this is easy to locate and
|
---|
3395 | tends to counteract removal of leftmosts elsewhere, and so keeps
|
---|
3396 | paths shorter than minimally guaranteed. This doesn't loop much
|
---|
3397 | because on average a node in a tree is near the bottom.
|
---|
3398 | 3. If x is the base of a chain (i.e., has parent links) relink
|
---|
3399 | x's parent and children to x's replacement (or null if none).
|
---|
3400 | */
|
---|
3401 |
|
---|
3402 | #define unlink_large_chunk(M, X) {\
|
---|
3403 | tchunkptr XP = X->parent;\
|
---|
3404 | tchunkptr R;\
|
---|
3405 | if (X->bk != X) {\
|
---|
3406 | tchunkptr F = X->fd;\
|
---|
3407 | R = X->bk;\
|
---|
3408 | if (RTCHECK(ok_address(M, F))) {\
|
---|
3409 | F->bk = R;\
|
---|
3410 | R->fd = F;\
|
---|
3411 | }\
|
---|
3412 | else {\
|
---|
3413 | CORRUPTION_ERROR_ACTION(M);\
|
---|
3414 | }\
|
---|
3415 | }\
|
---|
3416 | else {\
|
---|
3417 | tchunkptr* RP;\
|
---|
3418 | if (((R = *(RP = &(X->child[1]))) != 0) ||\
|
---|
3419 | ((R = *(RP = &(X->child[0]))) != 0)) {\
|
---|
3420 | tchunkptr* CP;\
|
---|
3421 | while ((*(CP = &(R->child[1])) != 0) ||\
|
---|
3422 | (*(CP = &(R->child[0])) != 0)) {\
|
---|
3423 | R = *(RP = CP);\
|
---|
3424 | }\
|
---|
3425 | if (RTCHECK(ok_address(M, RP)))\
|
---|
3426 | *RP = 0;\
|
---|
3427 | else {\
|
---|
3428 | CORRUPTION_ERROR_ACTION(M);\
|
---|
3429 | }\
|
---|
3430 | }\
|
---|
3431 | }\
|
---|
3432 | if (XP != 0) {\
|
---|
3433 | tbinptr* H = treebin_at(M, X->index);\
|
---|
3434 | if (X == *H) {\
|
---|
3435 | if ((*H = R) == 0) \
|
---|
3436 | clear_treemap(M, X->index);\
|
---|
3437 | }\
|
---|
3438 | else if (RTCHECK(ok_address(M, XP))) {\
|
---|
3439 | if (XP->child[0] == X) \
|
---|
3440 | XP->child[0] = R;\
|
---|
3441 | else \
|
---|
3442 | XP->child[1] = R;\
|
---|
3443 | }\
|
---|
3444 | else\
|
---|
3445 | CORRUPTION_ERROR_ACTION(M);\
|
---|
3446 | if (R != 0) {\
|
---|
3447 | if (RTCHECK(ok_address(M, R))) {\
|
---|
3448 | tchunkptr C0, C1;\
|
---|
3449 | R->parent = XP;\
|
---|
3450 | if ((C0 = X->child[0]) != 0) {\
|
---|
3451 | if (RTCHECK(ok_address(M, C0))) {\
|
---|
3452 | R->child[0] = C0;\
|
---|
3453 | C0->parent = R;\
|
---|
3454 | }\
|
---|
3455 | else\
|
---|
3456 | CORRUPTION_ERROR_ACTION(M);\
|
---|
3457 | }\
|
---|
3458 | if ((C1 = X->child[1]) != 0) {\
|
---|
3459 | if (RTCHECK(ok_address(M, C1))) {\
|
---|
3460 | R->child[1] = C1;\
|
---|
3461 | C1->parent = R;\
|
---|
3462 | }\
|
---|
3463 | else\
|
---|
3464 | CORRUPTION_ERROR_ACTION(M);\
|
---|
3465 | }\
|
---|
3466 | }\
|
---|
3467 | else\
|
---|
3468 | CORRUPTION_ERROR_ACTION(M);\
|
---|
3469 | }\
|
---|
3470 | }\
|
---|
3471 | }
|
---|
3472 |
|
---|
3473 | /* Relays to large vs small bin operations */
|
---|
3474 |
|
---|
3475 | #define insert_chunk(M, P, S)\
|
---|
3476 | if (is_small(S)) insert_small_chunk(M, P, S)\
|
---|
3477 | else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
|
---|
3478 |
|
---|
3479 | #define unlink_chunk(M, P, S)\
|
---|
3480 | if (is_small(S)) unlink_small_chunk(M, P, S)\
|
---|
3481 | else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
|
---|
3482 |
|
---|
3483 |
|
---|
3484 | /* Relays to internal calls to malloc/free from realloc, memalign etc */
|
---|
3485 |
|
---|
3486 | #if ONLY_MSPACES
|
---|
3487 | #define internal_malloc(m, b) mspace_malloc(m, b)
|
---|
3488 | #define internal_free(m, mem) mspace_free(m,mem);
|
---|
3489 | #else /* ONLY_MSPACES */
|
---|
3490 | #if MSPACES
|
---|
3491 | #define internal_malloc(m, b)\
|
---|
3492 | (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
|
---|
3493 | #define internal_free(m, mem)\
|
---|
3494 | if (m == gm) dlfree(mem); else mspace_free(m,mem);
|
---|
3495 | #else /* MSPACES */
|
---|
3496 | #define internal_malloc(m, b) dlmalloc(b)
|
---|
3497 | #define internal_free(m, mem) dlfree(mem)
|
---|
3498 | #endif /* MSPACES */
|
---|
3499 | #endif /* ONLY_MSPACES */
|
---|
3500 |
|
---|
3501 | /* ----------------------- Direct-mmapping chunks ----------------------- */
|
---|
3502 |
|
---|
3503 | /*
|
---|
3504 | Directly mmapped chunks are set up with an offset to the start of
|
---|
3505 | the mmapped region stored in the prev_foot field of the chunk. This
|
---|
3506 | allows reconstruction of the required argument to MUNMAP when freed,
|
---|
3507 | and also allows adjustment of the returned chunk to meet alignment
|
---|
3508 | requirements (especially in memalign). There is also enough space
|
---|
3509 | allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
|
---|
3510 | the PINUSE bit so frees can be checked.
|
---|
3511 | */
|
---|
3512 |
|
---|
3513 | /* Malloc using mmap */
|
---|
3514 | static void* mmap_alloc(mstate m, size_t nb) {
|
---|
3515 | size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
|
---|
3516 | if (mmsize > nb) { /* Check for wrap around 0 */
|
---|
3517 | char* mm = (char*)(DIRECT_MMAP(mmsize));
|
---|
3518 | if (mm != CMFAIL) {
|
---|
3519 | size_t offset = align_offset(chunk2mem(mm));
|
---|
3520 | size_t psize = mmsize - offset - MMAP_FOOT_PAD;
|
---|
3521 | mchunkptr p = (mchunkptr)(mm + offset);
|
---|
3522 | p->prev_foot = offset | IS_MMAPPED_BIT;
|
---|
3523 | (p)->head = (psize|CINUSE_BIT);
|
---|
3524 | mark_inuse_foot(m, p, psize);
|
---|
3525 | chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
|
---|
3526 | chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
|
---|
3527 |
|
---|
3528 | if (mm < m->least_addr)
|
---|
3529 | m->least_addr = mm;
|
---|
3530 | if ((m->footprint += mmsize) > m->max_footprint)
|
---|
3531 | m->max_footprint = m->footprint;
|
---|
3532 | assert(is_aligned(chunk2mem(p)));
|
---|
3533 | check_mmapped_chunk(m, p);
|
---|
3534 | return chunk2mem(p);
|
---|
3535 | }
|
---|
3536 | }
|
---|
3537 | return 0;
|
---|
3538 | }
|
---|
3539 |
|
---|
3540 | /* Realloc using mmap */
|
---|
3541 | static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
|
---|
3542 | size_t oldsize = chunksize(oldp);
|
---|
3543 | if (is_small(nb)) /* Can't shrink mmap regions below small size */
|
---|
3544 | return 0;
|
---|
3545 | /* Keep old chunk if big enough but not too big */
|
---|
3546 | if (oldsize >= nb + SIZE_T_SIZE &&
|
---|
3547 | (oldsize - nb) <= (mparams.granularity << 1))
|
---|
3548 | return oldp;
|
---|
3549 | else {
|
---|
3550 | size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
|
---|
3551 | size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
|
---|
3552 | size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
|
---|
3553 | char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
|
---|
3554 | oldmmsize, newmmsize, 1);
|
---|
3555 | if (cp != CMFAIL) {
|
---|
3556 | mchunkptr newp = (mchunkptr)(cp + offset);
|
---|
3557 | size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
|
---|
3558 | newp->head = (psize|CINUSE_BIT);
|
---|
3559 | mark_inuse_foot(m, newp, psize);
|
---|
3560 | chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
|
---|
3561 | chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
|
---|
3562 |
|
---|
3563 | if (cp < m->least_addr)
|
---|
3564 | m->least_addr = cp;
|
---|
3565 | if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
|
---|
3566 | m->max_footprint = m->footprint;
|
---|
3567 | check_mmapped_chunk(m, newp);
|
---|
3568 | return newp;
|
---|
3569 | }
|
---|
3570 | }
|
---|
3571 | return 0;
|
---|
3572 | }
|
---|
3573 |
|
---|
3574 | /* -------------------------- mspace management -------------------------- */
|
---|
3575 |
|
---|
3576 | /* Initialize top chunk and its size */
|
---|
3577 | static void init_top(mstate m, mchunkptr p, size_t psize) {
|
---|
3578 | /* Ensure alignment */
|
---|
3579 | size_t offset = align_offset(chunk2mem(p));
|
---|
3580 | p = (mchunkptr)((char*)p + offset);
|
---|
3581 | psize -= offset;
|
---|
3582 |
|
---|
3583 | m->top = p;
|
---|
3584 | m->topsize = psize;
|
---|
3585 | p->head = psize | PINUSE_BIT;
|
---|
3586 | /* set size of fake trailing chunk holding overhead space only once */
|
---|
3587 | chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
|
---|
3588 | m->trim_check = mparams.trim_threshold; /* reset on each update */
|
---|
3589 | }
|
---|
3590 |
|
---|
3591 | /* Initialize bins for a new mstate that is otherwise zeroed out */
|
---|
3592 | static void init_bins(mstate m) {
|
---|
3593 | /* Establish circular links for smallbins */
|
---|
3594 | bindex_t i;
|
---|
3595 | for (i = 0; i < NSMALLBINS; ++i) {
|
---|
3596 | sbinptr bin = smallbin_at(m,i);
|
---|
3597 | bin->fd = bin->bk = bin;
|
---|
3598 | }
|
---|
3599 | }
|
---|
3600 |
|
---|
3601 | #if PROCEED_ON_ERROR
|
---|
3602 |
|
---|
3603 | /* default corruption action */
|
---|
3604 | static void reset_on_error(mstate m) {
|
---|
3605 | int i;
|
---|
3606 | ++malloc_corruption_error_count;
|
---|
3607 | /* Reinitialize fields to forget about all memory */
|
---|
3608 | m->smallbins = m->treebins = 0;
|
---|
3609 | m->dvsize = m->topsize = 0;
|
---|
3610 | m->seg.base = 0;
|
---|
3611 | m->seg.size = 0;
|
---|
3612 | m->seg.next = 0;
|
---|
3613 | m->top = m->dv = 0;
|
---|
3614 | for (i = 0; i < NTREEBINS; ++i)
|
---|
3615 | *treebin_at(m, i) = 0;
|
---|
3616 | init_bins(m);
|
---|
3617 | }
|
---|
3618 | #endif /* PROCEED_ON_ERROR */
|
---|
3619 |
|
---|
3620 | /* Allocate chunk and prepend remainder with chunk in successor base. */
|
---|
3621 | static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
|
---|
3622 | size_t nb) {
|
---|
3623 | mchunkptr p = align_as_chunk(newbase);
|
---|
3624 | mchunkptr oldfirst = align_as_chunk(oldbase);
|
---|
3625 | size_t psize = (char*)oldfirst - (char*)p;
|
---|
3626 | mchunkptr q = chunk_plus_offset(p, nb);
|
---|
3627 | size_t qsize = psize - nb;
|
---|
3628 | set_size_and_pinuse_of_inuse_chunk(m, p, nb);
|
---|
3629 |
|
---|
3630 | assert((char*)oldfirst > (char*)q);
|
---|
3631 | assert(pinuse(oldfirst));
|
---|
3632 | assert(qsize >= MIN_CHUNK_SIZE);
|
---|
3633 |
|
---|
3634 | /* consolidate remainder with first chunk of old base */
|
---|
3635 | if (oldfirst == m->top) {
|
---|
3636 | size_t tsize = m->topsize += qsize;
|
---|
3637 | m->top = q;
|
---|
3638 | q->head = tsize | PINUSE_BIT;
|
---|
3639 | check_top_chunk(m, q);
|
---|
3640 | }
|
---|
3641 | else if (oldfirst == m->dv) {
|
---|
3642 | size_t dsize = m->dvsize += qsize;
|
---|
3643 | m->dv = q;
|
---|
3644 | set_size_and_pinuse_of_free_chunk(q, dsize);
|
---|
3645 | }
|
---|
3646 | else {
|
---|
3647 | if (!cinuse(oldfirst)) {
|
---|
3648 | size_t nsize = chunksize(oldfirst);
|
---|
3649 | unlink_chunk(m, oldfirst, nsize);
|
---|
3650 | oldfirst = chunk_plus_offset(oldfirst, nsize);
|
---|
3651 | qsize += nsize;
|
---|
3652 | }
|
---|
3653 | set_free_with_pinuse(q, qsize, oldfirst);
|
---|
3654 | insert_chunk(m, q, qsize);
|
---|
3655 | check_free_chunk(m, q);
|
---|
3656 | }
|
---|
3657 |
|
---|
3658 | check_malloced_chunk(m, chunk2mem(p), nb);
|
---|
3659 | return chunk2mem(p);
|
---|
3660 | }
|
---|
3661 |
|
---|
3662 | /* Add a segment to hold a new noncontiguous region */
|
---|
3663 | static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
|
---|
3664 | /* Determine locations and sizes of segment, fenceposts, old top */
|
---|
3665 | char* old_top = (char*)m->top;
|
---|
3666 | msegmentptr oldsp = segment_holding(m, old_top);
|
---|
3667 | char* old_end = oldsp->base + oldsp->size;
|
---|
3668 | size_t ssize = pad_request(sizeof(struct malloc_segment));
|
---|
3669 | char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
|
---|
3670 | size_t offset = align_offset(chunk2mem(rawsp));
|
---|
3671 | char* asp = rawsp + offset;
|
---|
3672 | char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
|
---|
3673 | mchunkptr sp = (mchunkptr)csp;
|
---|
3674 | msegmentptr ss = (msegmentptr)(chunk2mem(sp));
|
---|
3675 | mchunkptr tnext = chunk_plus_offset(sp, ssize);
|
---|
3676 | mchunkptr p = tnext;
|
---|
3677 | int nfences = 0;
|
---|
3678 |
|
---|
3679 | /* reset top to new space */
|
---|
3680 | init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
|
---|
3681 |
|
---|
3682 | /* Set up segment record */
|
---|
3683 | assert(is_aligned(ss));
|
---|
3684 | set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
|
---|
3685 | *ss = m->seg; /* Push current record */
|
---|
3686 | m->seg.base = tbase;
|
---|
3687 | m->seg.size = tsize;
|
---|
3688 | m->seg.sflags = mmapped;
|
---|
3689 | m->seg.next = ss;
|
---|
3690 |
|
---|
3691 | /* Insert trailing fenceposts */
|
---|
3692 | for (;;) {
|
---|
3693 | mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
|
---|
3694 | p->head = FENCEPOST_HEAD;
|
---|
3695 | ++nfences;
|
---|
3696 | if ((char*)(&(nextp->head)) < old_end)
|
---|
3697 | p = nextp;
|
---|
3698 | else
|
---|
3699 | break;
|
---|
3700 | }
|
---|
3701 | assert(nfences >= 2);
|
---|
3702 |
|
---|
3703 | /* Insert the rest of old top into a bin as an ordinary free chunk */
|
---|
3704 | if (csp != old_top) {
|
---|
3705 | mchunkptr q = (mchunkptr)old_top;
|
---|
3706 | size_t psize = csp - old_top;
|
---|
3707 | mchunkptr tn = chunk_plus_offset(q, psize);
|
---|
3708 | set_free_with_pinuse(q, psize, tn);
|
---|
3709 | insert_chunk(m, q, psize);
|
---|
3710 | }
|
---|
3711 |
|
---|
3712 | check_top_chunk(m, m->top);
|
---|
3713 | }
|
---|
3714 |
|
---|
3715 | /* -------------------------- System allocation -------------------------- */
|
---|
3716 |
|
---|
3717 | /* Get memory from system using MORECORE or MMAP */
|
---|
3718 | static void* sys_alloc(mstate m, size_t nb) {
|
---|
3719 | char* tbase = CMFAIL;
|
---|
3720 | size_t tsize = 0;
|
---|
3721 | flag_t mmap_flag = 0;
|
---|
3722 |
|
---|
3723 | init_mparams();
|
---|
3724 |
|
---|
3725 | /* Directly map large chunks */
|
---|
3726 | if (use_mmap(m) && nb >= mparams.mmap_threshold) {
|
---|
3727 | void* mem = mmap_alloc(m, nb);
|
---|
3728 | if (mem != 0)
|
---|
3729 | return mem;
|
---|
3730 | }
|
---|
3731 |
|
---|
3732 | /*
|
---|
3733 | Try getting memory in any of three ways (in most-preferred to
|
---|
3734 | least-preferred order):
|
---|
3735 | 1. A call to MORECORE that can normally contiguously extend memory.
|
---|
3736 | (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
|
---|
3737 | or main space is mmapped or a previous contiguous call failed)
|
---|
3738 | 2. A call to MMAP new space (disabled if not HAVE_MMAP).
|
---|
3739 | Note that under the default settings, if MORECORE is unable to
|
---|
3740 | fulfill a request, and HAVE_MMAP is true, then mmap is
|
---|
3741 | used as a noncontiguous system allocator. This is a useful backup
|
---|
3742 | strategy for systems with holes in address spaces -- in this case
|
---|
3743 | sbrk cannot contiguously expand the heap, but mmap may be able to
|
---|
3744 | find space.
|
---|
3745 | 3. A call to MORECORE that cannot usually contiguously extend memory.
|
---|
3746 | (disabled if not HAVE_MORECORE)
|
---|
3747 | */
|
---|
3748 |
|
---|
3749 | if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
|
---|
3750 | char* br = CMFAIL;
|
---|
3751 | msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
|
---|
3752 | size_t asize = 0;
|
---|
3753 | ACQUIRE_MORECORE_LOCK();
|
---|
3754 |
|
---|
3755 | if (ss == 0) { /* First time through or recovery */
|
---|
3756 | char* base = (char*)CALL_MORECORE(0);
|
---|
3757 | if (base != CMFAIL) {
|
---|
3758 | asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
|
---|
3759 | /* Adjust to end on a page boundary */
|
---|
3760 | if (!is_page_aligned(base))
|
---|
3761 | asize += (page_align((size_t)base) - (size_t)base);
|
---|
3762 | /* Can't call MORECORE if size is negative when treated as signed */
|
---|
3763 | if (asize < HALF_MAX_SIZE_T &&
|
---|
3764 | (br = (char*)(CALL_MORECORE(asize))) == base) {
|
---|
3765 | tbase = base;
|
---|
3766 | tsize = asize;
|
---|
3767 | }
|
---|
3768 | }
|
---|
3769 | }
|
---|
3770 | else {
|
---|
3771 | /* Subtract out existing available top space from MORECORE request. */
|
---|
3772 | asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE);
|
---|
3773 | /* Use mem here only if it did continuously extend old space */
|
---|
3774 | if (asize < HALF_MAX_SIZE_T &&
|
---|
3775 | (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
|
---|
3776 | tbase = br;
|
---|
3777 | tsize = asize;
|
---|
3778 | }
|
---|
3779 | }
|
---|
3780 |
|
---|
3781 | if (tbase == CMFAIL) { /* Cope with partial failure */
|
---|
3782 | if (br != CMFAIL) { /* Try to use/extend the space we did get */
|
---|
3783 | if (asize < HALF_MAX_SIZE_T &&
|
---|
3784 | asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
|
---|
3785 | size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize);
|
---|
3786 | if (esize < HALF_MAX_SIZE_T) {
|
---|
3787 | char* end = (char*)CALL_MORECORE(esize);
|
---|
3788 | if (end != CMFAIL)
|
---|
3789 | asize += esize;
|
---|
3790 | else { /* Can't use; try to release */
|
---|
3791 | (void) CALL_MORECORE(-asize);
|
---|
3792 | br = CMFAIL;
|
---|
3793 | }
|
---|
3794 | }
|
---|
3795 | }
|
---|
3796 | }
|
---|
3797 | if (br != CMFAIL) { /* Use the space we did get */
|
---|
3798 | tbase = br;
|
---|
3799 | tsize = asize;
|
---|
3800 | }
|
---|
3801 | else
|
---|
3802 | disable_contiguous(m); /* Don't try contiguous path in the future */
|
---|
3803 | }
|
---|
3804 |
|
---|
3805 | RELEASE_MORECORE_LOCK();
|
---|
3806 | }
|
---|
3807 |
|
---|
3808 | if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
|
---|
3809 | size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
|
---|
3810 | size_t rsize = granularity_align(req);
|
---|
3811 | if (rsize > nb) { /* Fail if wraps around zero */
|
---|
3812 | char* mp = (char*)(CALL_MMAP(rsize));
|
---|
3813 | if (mp != CMFAIL) {
|
---|
3814 | tbase = mp;
|
---|
3815 | tsize = rsize;
|
---|
3816 | mmap_flag = IS_MMAPPED_BIT;
|
---|
3817 | }
|
---|
3818 | }
|
---|
3819 | }
|
---|
3820 |
|
---|
3821 | if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
|
---|
3822 | size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
|
---|
3823 | if (asize < HALF_MAX_SIZE_T) {
|
---|
3824 | char* br = CMFAIL;
|
---|
3825 | char* end = CMFAIL;
|
---|
3826 | ACQUIRE_MORECORE_LOCK();
|
---|
3827 | br = (char*)(CALL_MORECORE(asize));
|
---|
3828 | end = (char*)(CALL_MORECORE(0));
|
---|
3829 | RELEASE_MORECORE_LOCK();
|
---|
3830 | if (br != CMFAIL && end != CMFAIL && br < end) {
|
---|
3831 | size_t ssize = end - br;
|
---|
3832 | if (ssize > nb + TOP_FOOT_SIZE) {
|
---|
3833 | tbase = br;
|
---|
3834 | tsize = ssize;
|
---|
3835 | }
|
---|
3836 | }
|
---|
3837 | }
|
---|
3838 | }
|
---|
3839 |
|
---|
3840 | if (tbase != CMFAIL) {
|
---|
3841 |
|
---|
3842 | if ((m->footprint += tsize) > m->max_footprint)
|
---|
3843 | m->max_footprint = m->footprint;
|
---|
3844 |
|
---|
3845 | if (!is_initialized(m)) { /* first-time initialization */
|
---|
3846 | m->seg.base = m->least_addr = tbase;
|
---|
3847 | m->seg.size = tsize;
|
---|
3848 | m->seg.sflags = mmap_flag;
|
---|
3849 | m->magic = mparams.magic;
|
---|
3850 | m->release_checks = MAX_RELEASE_CHECK_RATE;
|
---|
3851 | init_bins(m);
|
---|
3852 | #if !ONLY_MSPACES
|
---|
3853 | if (is_global(m))
|
---|
3854 | init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
|
---|
3855 | else
|
---|
3856 | #endif
|
---|
3857 | {
|
---|
3858 | /* Offset top by embedded malloc_state */
|
---|
3859 | mchunkptr mn = next_chunk(mem2chunk(m));
|
---|
3860 | init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
|
---|
3861 | }
|
---|
3862 | }
|
---|
3863 |
|
---|
3864 | else {
|
---|
3865 | /* Try to merge with an existing segment */
|
---|
3866 | msegmentptr sp = &m->seg;
|
---|
3867 | /* Only consider most recent segment if traversal suppressed */
|
---|
3868 | while (sp != 0 && tbase != sp->base + sp->size)
|
---|
3869 | sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
|
---|
3870 | if (sp != 0 &&
|
---|
3871 | !is_extern_segment(sp) &&
|
---|
3872 | (sp->sflags & IS_MMAPPED_BIT) == mmap_flag &&
|
---|
3873 | segment_holds(sp, m->top)) { /* append */
|
---|
3874 | sp->size += tsize;
|
---|
3875 | init_top(m, m->top, m->topsize + tsize);
|
---|
3876 | }
|
---|
3877 | else {
|
---|
3878 | if (tbase < m->least_addr)
|
---|
3879 | m->least_addr = tbase;
|
---|
3880 | sp = &m->seg;
|
---|
3881 | while (sp != 0 && sp->base != tbase + tsize)
|
---|
3882 | sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
|
---|
3883 | if (sp != 0 &&
|
---|
3884 | !is_extern_segment(sp) &&
|
---|
3885 | (sp->sflags & IS_MMAPPED_BIT) == mmap_flag) {
|
---|
3886 | char* oldbase = sp->base;
|
---|
3887 | sp->base = tbase;
|
---|
3888 | sp->size += tsize;
|
---|
3889 | return prepend_alloc(m, tbase, oldbase, nb);
|
---|
3890 | }
|
---|
3891 | else
|
---|
3892 | add_segment(m, tbase, tsize, mmap_flag);
|
---|
3893 | }
|
---|
3894 | }
|
---|
3895 |
|
---|
3896 | if (nb < m->topsize) { /* Allocate from new or extended top space */
|
---|
3897 | size_t rsize = m->topsize -= nb;
|
---|
3898 | mchunkptr p = m->top;
|
---|
3899 | mchunkptr r = m->top = chunk_plus_offset(p, nb);
|
---|
3900 | r->head = rsize | PINUSE_BIT;
|
---|
3901 | set_size_and_pinuse_of_inuse_chunk(m, p, nb);
|
---|
3902 | check_top_chunk(m, m->top);
|
---|
3903 | check_malloced_chunk(m, chunk2mem(p), nb);
|
---|
3904 | return chunk2mem(p);
|
---|
3905 | }
|
---|
3906 | }
|
---|
3907 |
|
---|
3908 | MALLOC_FAILURE_ACTION;
|
---|
3909 | return 0;
|
---|
3910 | }
|
---|
3911 |
|
---|
3912 | /* ----------------------- system deallocation -------------------------- */
|
---|
3913 |
|
---|
3914 | /* Unmap and unlink any mmapped segments that don't contain used chunks */
|
---|
3915 | static size_t release_unused_segments(mstate m) {
|
---|
3916 | size_t released = 0;
|
---|
3917 | int nsegs = 0;
|
---|
3918 | msegmentptr pred = &m->seg;
|
---|
3919 | msegmentptr sp = pred->next;
|
---|
3920 | while (sp != 0) {
|
---|
3921 | char* base = sp->base;
|
---|
3922 | size_t size = sp->size;
|
---|
3923 | msegmentptr next = sp->next;
|
---|
3924 | ++nsegs;
|
---|
3925 | if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
|
---|
3926 | mchunkptr p = align_as_chunk(base);
|
---|
3927 | size_t psize = chunksize(p);
|
---|
3928 | /* Can unmap if first chunk holds entire segment and not pinned */
|
---|
3929 | if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
|
---|
3930 | tchunkptr tp = (tchunkptr)p;
|
---|
3931 | assert(segment_holds(sp, (char*)sp));
|
---|
3932 | if (p == m->dv) {
|
---|
3933 | m->dv = 0;
|
---|
3934 | m->dvsize = 0;
|
---|
3935 | }
|
---|
3936 | else {
|
---|
3937 | unlink_large_chunk(m, tp);
|
---|
3938 | }
|
---|
3939 | if (CALL_MUNMAP(base, size) == 0) {
|
---|
3940 | released += size;
|
---|
3941 | m->footprint -= size;
|
---|
3942 | /* unlink obsoleted record */
|
---|
3943 | sp = pred;
|
---|
3944 | sp->next = next;
|
---|
3945 | }
|
---|
3946 | else { /* back out if cannot unmap */
|
---|
3947 | insert_large_chunk(m, tp, psize);
|
---|
3948 | }
|
---|
3949 | }
|
---|
3950 | }
|
---|
3951 | if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */
|
---|
3952 | break;
|
---|
3953 | pred = sp;
|
---|
3954 | sp = next;
|
---|
3955 | }
|
---|
3956 | /* Reset check counter */
|
---|
3957 | m->release_checks = ((nsegs > MAX_RELEASE_CHECK_RATE)?
|
---|
3958 | nsegs : MAX_RELEASE_CHECK_RATE);
|
---|
3959 | return released;
|
---|
3960 | }
|
---|
3961 |
|
---|
3962 | static int sys_trim(mstate m, size_t pad) {
|
---|
3963 | size_t released = 0;
|
---|
3964 | if (pad < MAX_REQUEST && is_initialized(m)) {
|
---|
3965 | pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
|
---|
3966 |
|
---|
3967 | if (m->topsize > pad) {
|
---|
3968 | /* Shrink top space in granularity-size units, keeping at least one */
|
---|
3969 | size_t unit = mparams.granularity;
|
---|
3970 | size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
|
---|
3971 | SIZE_T_ONE) * unit;
|
---|
3972 | msegmentptr sp = segment_holding(m, (char*)m->top);
|
---|
3973 |
|
---|
3974 | if (!is_extern_segment(sp)) {
|
---|
3975 | if (is_mmapped_segment(sp)) {
|
---|
3976 | if (HAVE_MMAP &&
|
---|
3977 | sp->size >= extra &&
|
---|
3978 | !has_segment_link(m, sp)) { /* can't shrink if pinned */
|
---|
3979 | size_t newsize = sp->size - extra;
|
---|
3980 | /* Prefer mremap, fall back to munmap */
|
---|
3981 | if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
|
---|
3982 | (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
|
---|
3983 | released = extra;
|
---|
3984 | }
|
---|
3985 | }
|
---|
3986 | }
|
---|
3987 | else if (HAVE_MORECORE) {
|
---|
3988 | if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
|
---|
3989 | extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
|
---|
3990 | ACQUIRE_MORECORE_LOCK();
|
---|
3991 | {
|
---|
3992 | /* Make sure end of memory is where we last set it. */
|
---|
3993 | char* old_br = (char*)(CALL_MORECORE(0));
|
---|
3994 | if (old_br == sp->base + sp->size) {
|
---|
3995 | char* rel_br = (char*)(CALL_MORECORE(-extra));
|
---|
3996 | char* new_br = (char*)(CALL_MORECORE(0));
|
---|
3997 | if (rel_br != CMFAIL && new_br < old_br)
|
---|
3998 | released = old_br - new_br;
|
---|
3999 | }
|
---|
4000 | }
|
---|
4001 | RELEASE_MORECORE_LOCK();
|
---|
4002 | }
|
---|
4003 | }
|
---|
4004 |
|
---|
4005 | if (released != 0) {
|
---|
4006 | sp->size -= released;
|
---|
4007 | m->footprint -= released;
|
---|
4008 | init_top(m, m->top, m->topsize - released);
|
---|
4009 | check_top_chunk(m, m->top);
|
---|
4010 | }
|
---|
4011 | }
|
---|
4012 |
|
---|
4013 | /* Unmap any unused mmapped segments */
|
---|
4014 | if (HAVE_MMAP)
|
---|
4015 | released += release_unused_segments(m);
|
---|
4016 |
|
---|
4017 | /* On failure, disable autotrim to avoid repeated failed future calls */
|
---|
4018 | if (released == 0 && m->topsize > m->trim_check)
|
---|
4019 | m->trim_check = MAX_SIZE_T;
|
---|
4020 | }
|
---|
4021 |
|
---|
4022 | return (released != 0)? 1 : 0;
|
---|
4023 | }
|
---|
4024 |
|
---|
4025 | /* ---------------------------- malloc support --------------------------- */
|
---|
4026 |
|
---|
4027 | /* allocate a large request from the best fitting chunk in a treebin */
|
---|
4028 | static void* tmalloc_large(mstate m, size_t nb) {
|
---|
4029 | tchunkptr v = 0;
|
---|
4030 | size_t rsize = -nb; /* Unsigned negation */
|
---|
4031 | tchunkptr t;
|
---|
4032 | bindex_t idx;
|
---|
4033 | compute_tree_index(nb, idx);
|
---|
4034 |
|
---|
4035 | if ((t = *treebin_at(m, idx)) != 0) {
|
---|
4036 | /* Traverse tree for this bin looking for node with size == nb */
|
---|
4037 | size_t sizebits = nb << leftshift_for_tree_index(idx);
|
---|
4038 | tchunkptr rst = 0; /* The deepest untaken right subtree */
|
---|
4039 | for (;;) {
|
---|
4040 | tchunkptr rt;
|
---|
4041 | size_t trem = chunksize(t) - nb;
|
---|
4042 | if (trem < rsize) {
|
---|
4043 | v = t;
|
---|
4044 | if ((rsize = trem) == 0)
|
---|
4045 | break;
|
---|
4046 | }
|
---|
4047 | rt = t->child[1];
|
---|
4048 | t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
|
---|
4049 | if (rt != 0 && rt != t)
|
---|
4050 | rst = rt;
|
---|
4051 | if (t == 0) {
|
---|
4052 | t = rst; /* set t to least subtree holding sizes > nb */
|
---|
4053 | break;
|
---|
4054 | }
|
---|
4055 | sizebits <<= 1;
|
---|
4056 | }
|
---|
4057 | }
|
---|
4058 |
|
---|
4059 | if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
|
---|
4060 | binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
|
---|
4061 | if (leftbits != 0) {
|
---|
4062 | bindex_t i;
|
---|
4063 | binmap_t leastbit = least_bit(leftbits);
|
---|
4064 | compute_bit2idx(leastbit, i);
|
---|
4065 | t = *treebin_at(m, i);
|
---|
4066 | }
|
---|
4067 | }
|
---|
4068 |
|
---|
4069 | while (t != 0) { /* find smallest of tree or subtree */
|
---|
4070 | size_t trem = chunksize(t) - nb;
|
---|
4071 | if (trem < rsize) {
|
---|
4072 | rsize = trem;
|
---|
4073 | v = t;
|
---|
4074 | }
|
---|
4075 | t = leftmost_child(t);
|
---|
4076 | }
|
---|
4077 |
|
---|
4078 | /* If dv is a better fit, return 0 so malloc will use it */
|
---|
4079 | if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
|
---|
4080 | if (RTCHECK(ok_address(m, v))) { /* split */
|
---|
4081 | mchunkptr r = chunk_plus_offset(v, nb);
|
---|
4082 | assert(chunksize(v) == rsize + nb);
|
---|
4083 | if (RTCHECK(ok_next(v, r))) {
|
---|
4084 | unlink_large_chunk(m, v);
|
---|
4085 | if (rsize < MIN_CHUNK_SIZE)
|
---|
4086 | set_inuse_and_pinuse(m, v, (rsize + nb));
|
---|
4087 | else {
|
---|
4088 | set_size_and_pinuse_of_inuse_chunk(m, v, nb);
|
---|
4089 | set_size_and_pinuse_of_free_chunk(r, rsize);
|
---|
4090 | insert_chunk(m, r, rsize);
|
---|
4091 | }
|
---|
4092 | return chunk2mem(v);
|
---|
4093 | }
|
---|
4094 | }
|
---|
4095 | CORRUPTION_ERROR_ACTION(m);
|
---|
4096 | }
|
---|
4097 | return 0;
|
---|
4098 | }
|
---|
4099 |
|
---|
4100 | /* allocate a small request from the best fitting chunk in a treebin */
|
---|
4101 | static void* tmalloc_small(mstate m, size_t nb) {
|
---|
4102 | tchunkptr t, v;
|
---|
4103 | size_t rsize;
|
---|
4104 | bindex_t i;
|
---|
4105 | binmap_t leastbit = least_bit(m->treemap);
|
---|
4106 | compute_bit2idx(leastbit, i);
|
---|
4107 |
|
---|
4108 | v = t = *treebin_at(m, i);
|
---|
4109 | rsize = chunksize(t) - nb;
|
---|
4110 |
|
---|
4111 | while ((t = leftmost_child(t)) != 0) {
|
---|
4112 | size_t trem = chunksize(t) - nb;
|
---|
4113 | if (trem < rsize) {
|
---|
4114 | rsize = trem;
|
---|
4115 | v = t;
|
---|
4116 | }
|
---|
4117 | }
|
---|
4118 |
|
---|
4119 | if (RTCHECK(ok_address(m, v))) {
|
---|
4120 | mchunkptr r = chunk_plus_offset(v, nb);
|
---|
4121 | assert(chunksize(v) == rsize + nb);
|
---|
4122 | if (RTCHECK(ok_next(v, r))) {
|
---|
4123 | unlink_large_chunk(m, v);
|
---|
4124 | if (rsize < MIN_CHUNK_SIZE)
|
---|
4125 | set_inuse_and_pinuse(m, v, (rsize + nb));
|
---|
4126 | else {
|
---|
4127 | set_size_and_pinuse_of_inuse_chunk(m, v, nb);
|
---|
4128 | set_size_and_pinuse_of_free_chunk(r, rsize);
|
---|
4129 | replace_dv(m, r, rsize);
|
---|
4130 | }
|
---|
4131 | return chunk2mem(v);
|
---|
4132 | }
|
---|
4133 | }
|
---|
4134 |
|
---|
4135 | CORRUPTION_ERROR_ACTION(m);
|
---|
4136 | return 0;
|
---|
4137 | }
|
---|
4138 |
|
---|
4139 | /* --------------------------- realloc support --------------------------- */
|
---|
4140 |
|
---|
4141 | static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
|
---|
4142 | if (bytes >= MAX_REQUEST) {
|
---|
4143 | MALLOC_FAILURE_ACTION;
|
---|
4144 | return 0;
|
---|
4145 | }
|
---|
4146 | if (!PREACTION(m)) {
|
---|
4147 | mchunkptr oldp = mem2chunk(oldmem);
|
---|
4148 | size_t oldsize = chunksize(oldp);
|
---|
4149 | mchunkptr next = chunk_plus_offset(oldp, oldsize);
|
---|
4150 | mchunkptr newp = 0;
|
---|
4151 | void* extra = 0;
|
---|
4152 |
|
---|
4153 | /* Try to either shrink or extend into top. Else malloc-copy-free */
|
---|
4154 |
|
---|
4155 | if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
|
---|
4156 | ok_next(oldp, next) && ok_pinuse(next))) {
|
---|
4157 | size_t nb = request2size(bytes);
|
---|
4158 | if (is_mmapped(oldp))
|
---|
4159 | newp = mmap_resize(m, oldp, nb);
|
---|
4160 | else if (oldsize >= nb) { /* already big enough */
|
---|
4161 | size_t rsize = oldsize - nb;
|
---|
4162 | newp = oldp;
|
---|
4163 | if (rsize >= MIN_CHUNK_SIZE) {
|
---|
4164 | mchunkptr remainder = chunk_plus_offset(newp, nb);
|
---|
4165 | set_inuse(m, newp, nb);
|
---|
4166 | set_inuse(m, remainder, rsize);
|
---|
4167 | extra = chunk2mem(remainder);
|
---|
4168 | }
|
---|
4169 | }
|
---|
4170 | else if (next == m->top && oldsize + m->topsize > nb) {
|
---|
4171 | /* Expand into top */
|
---|
4172 | size_t newsize = oldsize + m->topsize;
|
---|
4173 | size_t newtopsize = newsize - nb;
|
---|
4174 | mchunkptr newtop = chunk_plus_offset(oldp, nb);
|
---|
4175 | set_inuse(m, oldp, nb);
|
---|
4176 | newtop->head = newtopsize |PINUSE_BIT;
|
---|
4177 | m->top = newtop;
|
---|
4178 | m->topsize = newtopsize;
|
---|
4179 | newp = oldp;
|
---|
4180 | }
|
---|
4181 | }
|
---|
4182 | else {
|
---|
4183 | USAGE_ERROR_ACTION(m, oldmem);
|
---|
4184 | POSTACTION(m);
|
---|
4185 | return 0;
|
---|
4186 | }
|
---|
4187 |
|
---|
4188 | POSTACTION(m);
|
---|
4189 |
|
---|
4190 | if (newp != 0) {
|
---|
4191 | if (extra != 0) {
|
---|
4192 | internal_free(m, extra);
|
---|
4193 | }
|
---|
4194 | check_inuse_chunk(m, newp);
|
---|
4195 | return chunk2mem(newp);
|
---|
4196 | }
|
---|
4197 | else {
|
---|
4198 | void* newmem = internal_malloc(m, bytes);
|
---|
4199 | if (newmem != 0) {
|
---|
4200 | size_t oc = oldsize - overhead_for(oldp);
|
---|
4201 | memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
|
---|
4202 | internal_free(m, oldmem);
|
---|
4203 | }
|
---|
4204 | return newmem;
|
---|
4205 | }
|
---|
4206 | }
|
---|
4207 | return 0;
|
---|
4208 | }
|
---|
4209 |
|
---|
4210 | /* --------------------------- memalign support -------------------------- */
|
---|
4211 |
|
---|
4212 | static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
|
---|
4213 | if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */
|
---|
4214 | return internal_malloc(m, bytes);
|
---|
4215 | if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
|
---|
4216 | alignment = MIN_CHUNK_SIZE;
|
---|
4217 | if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
|
---|
4218 | size_t a = MALLOC_ALIGNMENT << 1;
|
---|
4219 | while (a < alignment) a <<= 1;
|
---|
4220 | alignment = a;
|
---|
4221 | }
|
---|
4222 |
|
---|
4223 | if (bytes >= MAX_REQUEST - alignment) {
|
---|
4224 | if (m != 0) { /* Test isn't needed but avoids compiler warning */
|
---|
4225 | MALLOC_FAILURE_ACTION;
|
---|
4226 | }
|
---|
4227 | }
|
---|
4228 | else {
|
---|
4229 | size_t nb = request2size(bytes);
|
---|
4230 | size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
|
---|
4231 | char* mem = (char*)internal_malloc(m, req);
|
---|
4232 | if (mem != 0) {
|
---|
4233 | void* leader = 0;
|
---|
4234 | void* trailer = 0;
|
---|
4235 | mchunkptr p = mem2chunk(mem);
|
---|
4236 |
|
---|
4237 | if (PREACTION(m)) return 0;
|
---|
4238 | if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
|
---|
4239 | /*
|
---|
4240 | Find an aligned spot inside chunk. Since we need to give
|
---|
4241 | back leading space in a chunk of at least MIN_CHUNK_SIZE, if
|
---|
4242 | the first calculation places us at a spot with less than
|
---|
4243 | MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
|
---|
4244 | We've allocated enough total room so that this is always
|
---|
4245 | possible.
|
---|
4246 | */
|
---|
4247 | char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
|
---|
4248 | alignment -
|
---|
4249 | SIZE_T_ONE)) &
|
---|
4250 | -alignment));
|
---|
4251 | char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
|
---|
4252 | br : br+alignment;
|
---|
4253 | mchunkptr newp = (mchunkptr)pos;
|
---|
4254 | size_t leadsize = pos - (char*)(p);
|
---|
4255 | size_t newsize = chunksize(p) - leadsize;
|
---|
4256 |
|
---|
4257 | if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
|
---|
4258 | newp->prev_foot = p->prev_foot + leadsize;
|
---|
4259 | newp->head = (newsize|CINUSE_BIT);
|
---|
4260 | }
|
---|
4261 | else { /* Otherwise, give back leader, use the rest */
|
---|
4262 | set_inuse(m, newp, newsize);
|
---|
4263 | set_inuse(m, p, leadsize);
|
---|
4264 | leader = chunk2mem(p);
|
---|
4265 | }
|
---|
4266 | p = newp;
|
---|
4267 | }
|
---|
4268 |
|
---|
4269 | /* Give back spare room at the end */
|
---|
4270 | if (!is_mmapped(p)) {
|
---|
4271 | size_t size = chunksize(p);
|
---|
4272 | if (size > nb + MIN_CHUNK_SIZE) {
|
---|
4273 | size_t remainder_size = size - nb;
|
---|
4274 | mchunkptr remainder = chunk_plus_offset(p, nb);
|
---|
4275 | set_inuse(m, p, nb);
|
---|
4276 | set_inuse(m, remainder, remainder_size);
|
---|
4277 | trailer = chunk2mem(remainder);
|
---|
4278 | }
|
---|
4279 | }
|
---|
4280 |
|
---|
4281 | assert (chunksize(p) >= nb);
|
---|
4282 | assert((((size_t)(chunk2mem(p))) % alignment) == 0);
|
---|
4283 | check_inuse_chunk(m, p);
|
---|
4284 | POSTACTION(m);
|
---|
4285 | if (leader != 0) {
|
---|
4286 | internal_free(m, leader);
|
---|
4287 | }
|
---|
4288 | if (trailer != 0) {
|
---|
4289 | internal_free(m, trailer);
|
---|
4290 | }
|
---|
4291 | return chunk2mem(p);
|
---|
4292 | }
|
---|
4293 | }
|
---|
4294 | return 0;
|
---|
4295 | }
|
---|
4296 |
|
---|
4297 | /* ------------------------ comalloc/coalloc support --------------------- */
|
---|
4298 |
|
---|
4299 | static void** ialloc(mstate m,
|
---|
4300 | size_t n_elements,
|
---|
4301 | size_t* sizes,
|
---|
4302 | int opts,
|
---|
4303 | void* chunks[]) {
|
---|
4304 | /*
|
---|
4305 | This provides common support for independent_X routines, handling
|
---|
4306 | all of the combinations that can result.
|
---|
4307 |
|
---|
4308 | The opts arg has:
|
---|
4309 | bit 0 set if all elements are same size (using sizes[0])
|
---|
4310 | bit 1 set if elements should be zeroed
|
---|
4311 | */
|
---|
4312 |
|
---|
4313 | size_t element_size; /* chunksize of each element, if all same */
|
---|
4314 | size_t contents_size; /* total size of elements */
|
---|
4315 | size_t array_size; /* request size of pointer array */
|
---|
4316 | void* mem; /* malloced aggregate space */
|
---|
4317 | mchunkptr p; /* corresponding chunk */
|
---|
4318 | size_t remainder_size; /* remaining bytes while splitting */
|
---|
4319 | void** marray; /* either "chunks" or malloced ptr array */
|
---|
4320 | mchunkptr array_chunk; /* chunk for malloced ptr array */
|
---|
4321 | flag_t was_enabled; /* to disable mmap */
|
---|
4322 | size_t size;
|
---|
4323 | size_t i;
|
---|
4324 |
|
---|
4325 | /* compute array length, if needed */
|
---|
4326 | if (chunks != 0) {
|
---|
4327 | if (n_elements == 0)
|
---|
4328 | return chunks; /* nothing to do */
|
---|
4329 | marray = chunks;
|
---|
4330 | array_size = 0;
|
---|
4331 | }
|
---|
4332 | else {
|
---|
4333 | /* if empty req, must still return chunk representing empty array */
|
---|
4334 | if (n_elements == 0)
|
---|
4335 | return (void**)internal_malloc(m, 0);
|
---|
4336 | marray = 0;
|
---|
4337 | array_size = request2size(n_elements * (sizeof(void*)));
|
---|
4338 | }
|
---|
4339 |
|
---|
4340 | /* compute total element size */
|
---|
4341 | if (opts & 0x1) { /* all-same-size */
|
---|
4342 | element_size = request2size(*sizes);
|
---|
4343 | contents_size = n_elements * element_size;
|
---|
4344 | }
|
---|
4345 | else { /* add up all the sizes */
|
---|
4346 | element_size = 0;
|
---|
4347 | contents_size = 0;
|
---|
4348 | for (i = 0; i != n_elements; ++i)
|
---|
4349 | contents_size += request2size(sizes[i]);
|
---|
4350 | }
|
---|
4351 |
|
---|
4352 | size = contents_size + array_size;
|
---|
4353 |
|
---|
4354 | /*
|
---|
4355 | Allocate the aggregate chunk. First disable direct-mmapping so
|
---|
4356 | malloc won't use it, since we would not be able to later
|
---|
4357 | free/realloc space internal to a segregated mmap region.
|
---|
4358 | */
|
---|
4359 | was_enabled = use_mmap(m);
|
---|
4360 | disable_mmap(m);
|
---|
4361 | mem = internal_malloc(m, size - CHUNK_OVERHEAD);
|
---|
4362 | if (was_enabled)
|
---|
4363 | enable_mmap(m);
|
---|
4364 | if (mem == 0)
|
---|
4365 | return 0;
|
---|
4366 |
|
---|
4367 | if (PREACTION(m)) return 0;
|
---|
4368 | p = mem2chunk(mem);
|
---|
4369 | remainder_size = chunksize(p);
|
---|
4370 |
|
---|
4371 | assert(!is_mmapped(p));
|
---|
4372 |
|
---|
4373 | if (opts & 0x2) { /* optionally clear the elements */
|
---|
4374 | memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
|
---|
4375 | }
|
---|
4376 |
|
---|
4377 | /* If not provided, allocate the pointer array as final part of chunk */
|
---|
4378 | if (marray == 0) {
|
---|
4379 | size_t array_chunk_size;
|
---|
4380 | array_chunk = chunk_plus_offset(p, contents_size);
|
---|
4381 | array_chunk_size = remainder_size - contents_size;
|
---|
4382 | marray = (void**) (chunk2mem(array_chunk));
|
---|
4383 | set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
|
---|
4384 | remainder_size = contents_size;
|
---|
4385 | }
|
---|
4386 |
|
---|
4387 | /* split out elements */
|
---|
4388 | for (i = 0; ; ++i) {
|
---|
4389 | marray[i] = chunk2mem(p);
|
---|
4390 | if (i != n_elements-1) {
|
---|
4391 | if (element_size != 0)
|
---|
4392 | size = element_size;
|
---|
4393 | else
|
---|
4394 | size = request2size(sizes[i]);
|
---|
4395 | remainder_size -= size;
|
---|
4396 | set_size_and_pinuse_of_inuse_chunk(m, p, size);
|
---|
4397 | p = chunk_plus_offset(p, size);
|
---|
4398 | }
|
---|
4399 | else { /* the final element absorbs any overallocation slop */
|
---|
4400 | set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
|
---|
4401 | break;
|
---|
4402 | }
|
---|
4403 | }
|
---|
4404 |
|
---|
4405 | #if DEBUG
|
---|
4406 | if (marray != chunks) {
|
---|
4407 | /* final element must have exactly exhausted chunk */
|
---|
4408 | if (element_size != 0) {
|
---|
4409 | assert(remainder_size == element_size);
|
---|
4410 | }
|
---|
4411 | else {
|
---|
4412 | assert(remainder_size == request2size(sizes[i]));
|
---|
4413 | }
|
---|
4414 | check_inuse_chunk(m, mem2chunk(marray));
|
---|
4415 | }
|
---|
4416 | for (i = 0; i != n_elements; ++i)
|
---|
4417 | check_inuse_chunk(m, mem2chunk(marray[i]));
|
---|
4418 |
|
---|
4419 | #endif /* DEBUG */
|
---|
4420 |
|
---|
4421 | POSTACTION(m);
|
---|
4422 | return marray;
|
---|
4423 | }
|
---|
4424 |
|
---|
4425 |
|
---|
4426 | /* -------------------------- public routines ---------------------------- */
|
---|
4427 |
|
---|
4428 | #if !ONLY_MSPACES
|
---|
4429 |
|
---|
4430 | void* dlmalloc(size_t bytes) {
|
---|
4431 | /*
|
---|
4432 | Basic algorithm:
|
---|
4433 | If a small request (< 256 bytes minus per-chunk overhead):
|
---|
4434 | 1. If one exists, use a remainderless chunk in associated smallbin.
|
---|
4435 | (Remainderless means that there are too few excess bytes to
|
---|
4436 | represent as a chunk.)
|
---|
4437 | 2. If it is big enough, use the dv chunk, which is normally the
|
---|
4438 | chunk adjacent to the one used for the most recent small request.
|
---|
4439 | 3. If one exists, split the smallest available chunk in a bin,
|
---|
4440 | saving remainder in dv.
|
---|
4441 | 4. If it is big enough, use the top chunk.
|
---|
4442 | 5. If available, get memory from system and use it
|
---|
4443 | Otherwise, for a large request:
|
---|
4444 | 1. Find the smallest available binned chunk that fits, and use it
|
---|
4445 | if it is better fitting than dv chunk, splitting if necessary.
|
---|
4446 | 2. If better fitting than any binned chunk, use the dv chunk.
|
---|
4447 | 3. If it is big enough, use the top chunk.
|
---|
4448 | 4. If request size >= mmap threshold, try to directly mmap this chunk.
|
---|
4449 | 5. If available, get memory from system and use it
|
---|
4450 |
|
---|
4451 | The ugly goto's here ensure that postaction occurs along all paths.
|
---|
4452 | */
|
---|
4453 |
|
---|
4454 | if (!PREACTION(gm)) {
|
---|
4455 | void* mem;
|
---|
4456 | size_t nb;
|
---|
4457 | if (bytes <= MAX_SMALL_REQUEST) {
|
---|
4458 | bindex_t idx;
|
---|
4459 | binmap_t smallbits;
|
---|
4460 | nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
|
---|
4461 | idx = small_index(nb);
|
---|
4462 | smallbits = gm->smallmap >> idx;
|
---|
4463 |
|
---|
4464 | if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
|
---|
4465 | mchunkptr b, p;
|
---|
4466 | idx += ~smallbits & 1; /* Uses next bin if idx empty */
|
---|
4467 | b = smallbin_at(gm, idx);
|
---|
4468 | p = b->fd;
|
---|
4469 | assert(chunksize(p) == small_index2size(idx));
|
---|
4470 | unlink_first_small_chunk(gm, b, p, idx);
|
---|
4471 | set_inuse_and_pinuse(gm, p, small_index2size(idx));
|
---|
4472 | mem = chunk2mem(p);
|
---|
4473 | check_malloced_chunk(gm, mem, nb);
|
---|
4474 | goto postaction;
|
---|
4475 | }
|
---|
4476 |
|
---|
4477 | else if (nb > gm->dvsize) {
|
---|
4478 | if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
|
---|
4479 | mchunkptr b, p, r;
|
---|
4480 | size_t rsize;
|
---|
4481 | bindex_t i;
|
---|
4482 | binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
|
---|
4483 | binmap_t leastbit = least_bit(leftbits);
|
---|
4484 | compute_bit2idx(leastbit, i);
|
---|
4485 | b = smallbin_at(gm, i);
|
---|
4486 | p = b->fd;
|
---|
4487 | assert(chunksize(p) == small_index2size(i));
|
---|
4488 | unlink_first_small_chunk(gm, b, p, i);
|
---|
4489 | rsize = small_index2size(i) - nb;
|
---|
4490 | /* Fit here cannot be remainderless if 4byte sizes */
|
---|
4491 | if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
|
---|
4492 | set_inuse_and_pinuse(gm, p, small_index2size(i));
|
---|
4493 | else {
|
---|
4494 | set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
|
---|
4495 | r = chunk_plus_offset(p, nb);
|
---|
4496 | set_size_and_pinuse_of_free_chunk(r, rsize);
|
---|
4497 | replace_dv(gm, r, rsize);
|
---|
4498 | }
|
---|
4499 | mem = chunk2mem(p);
|
---|
4500 | check_malloced_chunk(gm, mem, nb);
|
---|
4501 | goto postaction;
|
---|
4502 | }
|
---|
4503 |
|
---|
4504 | else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
|
---|
4505 | check_malloced_chunk(gm, mem, nb);
|
---|
4506 | goto postaction;
|
---|
4507 | }
|
---|
4508 | }
|
---|
4509 | }
|
---|
4510 | else if (bytes >= MAX_REQUEST)
|
---|
4511 | nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
|
---|
4512 | else {
|
---|
4513 | nb = pad_request(bytes);
|
---|
4514 | if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
|
---|
4515 | check_malloced_chunk(gm, mem, nb);
|
---|
4516 | goto postaction;
|
---|
4517 | }
|
---|
4518 | }
|
---|
4519 |
|
---|
4520 | if (nb <= gm->dvsize) {
|
---|
4521 | size_t rsize = gm->dvsize - nb;
|
---|
4522 | mchunkptr p = gm->dv;
|
---|
4523 | if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
|
---|
4524 | mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
|
---|
4525 | gm->dvsize = rsize;
|
---|
4526 | set_size_and_pinuse_of_free_chunk(r, rsize);
|
---|
4527 | set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
|
---|
4528 | }
|
---|
4529 | else { /* exhaust dv */
|
---|
4530 | size_t dvs = gm->dvsize;
|
---|
4531 | gm->dvsize = 0;
|
---|
4532 | gm->dv = 0;
|
---|
4533 | set_inuse_and_pinuse(gm, p, dvs);
|
---|
4534 | }
|
---|
4535 | mem = chunk2mem(p);
|
---|
4536 | check_malloced_chunk(gm, mem, nb);
|
---|
4537 | goto postaction;
|
---|
4538 | }
|
---|
4539 |
|
---|
4540 | else if (nb < gm->topsize) { /* Split top */
|
---|
4541 | size_t rsize = gm->topsize -= nb;
|
---|
4542 | mchunkptr p = gm->top;
|
---|
4543 | mchunkptr r = gm->top = chunk_plus_offset(p, nb);
|
---|
4544 | r->head = rsize | PINUSE_BIT;
|
---|
4545 | set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
|
---|
4546 | mem = chunk2mem(p);
|
---|
4547 | check_top_chunk(gm, gm->top);
|
---|
4548 | check_malloced_chunk(gm, mem, nb);
|
---|
4549 | goto postaction;
|
---|
4550 | }
|
---|
4551 |
|
---|
4552 | mem = sys_alloc(gm, nb);
|
---|
4553 |
|
---|
4554 | postaction:
|
---|
4555 | POSTACTION(gm);
|
---|
4556 | return mem;
|
---|
4557 | }
|
---|
4558 |
|
---|
4559 | return 0;
|
---|
4560 | }
|
---|
4561 |
|
---|
4562 | void dlfree(void* mem) {
|
---|
4563 | /*
|
---|
4564 | Consolidate freed chunks with preceeding or succeeding bordering
|
---|
4565 | free chunks, if they exist, and then place in a bin. Intermixed
|
---|
4566 | with special cases for top, dv, mmapped chunks, and usage errors.
|
---|
4567 | */
|
---|
4568 |
|
---|
4569 | if (mem != 0) {
|
---|
4570 | mchunkptr p = mem2chunk(mem);
|
---|
4571 | #if FOOTERS
|
---|
4572 | mstate fm = get_mstate_for(p);
|
---|
4573 | if (!ok_magic(fm)) {
|
---|
4574 | USAGE_ERROR_ACTION(fm, p);
|
---|
4575 | return;
|
---|
4576 | }
|
---|
4577 | #else /* FOOTERS */
|
---|
4578 | #define fm gm
|
---|
4579 | #endif /* FOOTERS */
|
---|
4580 | if (!PREACTION(fm)) {
|
---|
4581 | check_inuse_chunk(fm, p);
|
---|
4582 | if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
|
---|
4583 | size_t psize = chunksize(p);
|
---|
4584 | mchunkptr next = chunk_plus_offset(p, psize);
|
---|
4585 | if (!pinuse(p)) {
|
---|
4586 | size_t prevsize = p->prev_foot;
|
---|
4587 | if ((prevsize & IS_MMAPPED_BIT) != 0) {
|
---|
4588 | prevsize &= ~IS_MMAPPED_BIT;
|
---|
4589 | psize += prevsize + MMAP_FOOT_PAD;
|
---|
4590 | if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
|
---|
4591 | fm->footprint -= psize;
|
---|
4592 | goto postaction;
|
---|
4593 | }
|
---|
4594 | else {
|
---|
4595 | mchunkptr prev = chunk_minus_offset(p, prevsize);
|
---|
4596 | psize += prevsize;
|
---|
4597 | p = prev;
|
---|
4598 | if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
|
---|
4599 | if (p != fm->dv) {
|
---|
4600 | unlink_chunk(fm, p, prevsize);
|
---|
4601 | }
|
---|
4602 | else if ((next->head & INUSE_BITS) == INUSE_BITS) {
|
---|
4603 | fm->dvsize = psize;
|
---|
4604 | set_free_with_pinuse(p, psize, next);
|
---|
4605 | goto postaction;
|
---|
4606 | }
|
---|
4607 | }
|
---|
4608 | else
|
---|
4609 | goto erroraction;
|
---|
4610 | }
|
---|
4611 | }
|
---|
4612 |
|
---|
4613 | if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
|
---|
4614 | if (!cinuse(next)) { /* consolidate forward */
|
---|
4615 | if (next == fm->top) {
|
---|
4616 | size_t tsize = fm->topsize += psize;
|
---|
4617 | fm->top = p;
|
---|
4618 | p->head = tsize | PINUSE_BIT;
|
---|
4619 | if (p == fm->dv) {
|
---|
4620 | fm->dv = 0;
|
---|
4621 | fm->dvsize = 0;
|
---|
4622 | }
|
---|
4623 | if (should_trim(fm, tsize))
|
---|
4624 | sys_trim(fm, 0);
|
---|
4625 | goto postaction;
|
---|
4626 | }
|
---|
4627 | else if (next == fm->dv) {
|
---|
4628 | size_t dsize = fm->dvsize += psize;
|
---|
4629 | fm->dv = p;
|
---|
4630 | set_size_and_pinuse_of_free_chunk(p, dsize);
|
---|
4631 | goto postaction;
|
---|
4632 | }
|
---|
4633 | else {
|
---|
4634 | size_t nsize = chunksize(next);
|
---|
4635 | psize += nsize;
|
---|
4636 | unlink_chunk(fm, next, nsize);
|
---|
4637 | set_size_and_pinuse_of_free_chunk(p, psize);
|
---|
4638 | if (p == fm->dv) {
|
---|
4639 | fm->dvsize = psize;
|
---|
4640 | goto postaction;
|
---|
4641 | }
|
---|
4642 | }
|
---|
4643 | }
|
---|
4644 | else
|
---|
4645 | set_free_with_pinuse(p, psize, next);
|
---|
4646 |
|
---|
4647 | if (is_small(psize)) {
|
---|
4648 | insert_small_chunk(fm, p, psize);
|
---|
4649 | check_free_chunk(fm, p);
|
---|
4650 | }
|
---|
4651 | else {
|
---|
4652 | tchunkptr tp = (tchunkptr)p;
|
---|
4653 | insert_large_chunk(fm, tp, psize);
|
---|
4654 | check_free_chunk(fm, p);
|
---|
4655 | if (--fm->release_checks == 0)
|
---|
4656 | release_unused_segments(fm);
|
---|
4657 | }
|
---|
4658 | goto postaction;
|
---|
4659 | }
|
---|
4660 | }
|
---|
4661 | erroraction:
|
---|
4662 | USAGE_ERROR_ACTION(fm, p);
|
---|
4663 | postaction:
|
---|
4664 | POSTACTION(fm);
|
---|
4665 | }
|
---|
4666 | }
|
---|
4667 | #if !FOOTERS
|
---|
4668 | #undef fm
|
---|
4669 | #endif /* FOOTERS */
|
---|
4670 | }
|
---|
4671 |
|
---|
4672 | void* dlcalloc(size_t n_elements, size_t elem_size) {
|
---|
4673 | void* mem;
|
---|
4674 | size_t req = 0;
|
---|
4675 | if (n_elements != 0) {
|
---|
4676 | req = n_elements * elem_size;
|
---|
4677 | if (((n_elements | elem_size) & ~(size_t)0xffff) &&
|
---|
4678 | (req / n_elements != elem_size))
|
---|
4679 | req = MAX_SIZE_T; /* force downstream failure on overflow */
|
---|
4680 | }
|
---|
4681 | mem = dlmalloc(req);
|
---|
4682 | if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
|
---|
4683 | memset(mem, 0, req);
|
---|
4684 | return mem;
|
---|
4685 | }
|
---|
4686 |
|
---|
4687 | void* dlrealloc(void* oldmem, size_t bytes) {
|
---|
4688 | if (oldmem == 0)
|
---|
4689 | return dlmalloc(bytes);
|
---|
4690 | #ifdef REALLOC_ZERO_BYTES_FREES
|
---|
4691 | if (bytes == 0) {
|
---|
4692 | dlfree(oldmem);
|
---|
4693 | return 0;
|
---|
4694 | }
|
---|
4695 | #endif /* REALLOC_ZERO_BYTES_FREES */
|
---|
4696 | else {
|
---|
4697 | #if ! FOOTERS
|
---|
4698 | mstate m = gm;
|
---|
4699 | #else /* FOOTERS */
|
---|
4700 | mstate m = get_mstate_for(mem2chunk(oldmem));
|
---|
4701 | if (!ok_magic(m)) {
|
---|
4702 | USAGE_ERROR_ACTION(m, oldmem);
|
---|
4703 | return 0;
|
---|
4704 | }
|
---|
4705 | #endif /* FOOTERS */
|
---|
4706 | return internal_realloc(m, oldmem, bytes);
|
---|
4707 | }
|
---|
4708 | }
|
---|
4709 |
|
---|
4710 | void* dlmemalign(size_t alignment, size_t bytes) {
|
---|
4711 | return internal_memalign(gm, alignment, bytes);
|
---|
4712 | }
|
---|
4713 |
|
---|
4714 | void** dlindependent_calloc(size_t n_elements, size_t elem_size,
|
---|
4715 | void* chunks[]) {
|
---|
4716 | size_t sz = elem_size; /* serves as 1-element array */
|
---|
4717 | return ialloc(gm, n_elements, &sz, 3, chunks);
|
---|
4718 | }
|
---|
4719 |
|
---|
4720 | void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
|
---|
4721 | void* chunks[]) {
|
---|
4722 | return ialloc(gm, n_elements, sizes, 0, chunks);
|
---|
4723 | }
|
---|
4724 |
|
---|
4725 | void* dlvalloc(size_t bytes) {
|
---|
4726 | size_t pagesz;
|
---|
4727 | init_mparams();
|
---|
4728 | pagesz = mparams.page_size;
|
---|
4729 | return dlmemalign(pagesz, bytes);
|
---|
4730 | }
|
---|
4731 |
|
---|
4732 | void* dlpvalloc(size_t bytes) {
|
---|
4733 | size_t pagesz;
|
---|
4734 | init_mparams();
|
---|
4735 | pagesz = mparams.page_size;
|
---|
4736 | return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
|
---|
4737 | }
|
---|
4738 |
|
---|
4739 | int dlmalloc_trim(size_t pad) {
|
---|
4740 | int result = 0;
|
---|
4741 | if (!PREACTION(gm)) {
|
---|
4742 | result = sys_trim(gm, pad);
|
---|
4743 | POSTACTION(gm);
|
---|
4744 | }
|
---|
4745 | return result;
|
---|
4746 | }
|
---|
4747 |
|
---|
4748 | size_t dlmalloc_footprint(void) {
|
---|
4749 | return gm->footprint;
|
---|
4750 | }
|
---|
4751 |
|
---|
4752 | size_t dlmalloc_max_footprint(void) {
|
---|
4753 | return gm->max_footprint;
|
---|
4754 | }
|
---|
4755 |
|
---|
4756 | #if !NO_MALLINFO
|
---|
4757 | struct mallinfo dlmallinfo(void) {
|
---|
4758 | return internal_mallinfo(gm);
|
---|
4759 | }
|
---|
4760 | #endif /* NO_MALLINFO */
|
---|
4761 |
|
---|
4762 | void dlmalloc_stats() {
|
---|
4763 | internal_malloc_stats(gm);
|
---|
4764 | }
|
---|
4765 |
|
---|
4766 | size_t dlmalloc_usable_size(void* mem) {
|
---|
4767 | if (mem != 0) {
|
---|
4768 | mchunkptr p = mem2chunk(mem);
|
---|
4769 | if (cinuse(p))
|
---|
4770 | return chunksize(p) - overhead_for(p);
|
---|
4771 | }
|
---|
4772 | return 0;
|
---|
4773 | }
|
---|
4774 |
|
---|
4775 | int dlmallopt(int param_number, int value) {
|
---|
4776 | return change_mparam(param_number, value);
|
---|
4777 | }
|
---|
4778 |
|
---|
4779 | #endif /* !ONLY_MSPACES */
|
---|
4780 |
|
---|
4781 | /* ----------------------------- user mspaces ---------------------------- */
|
---|
4782 |
|
---|
4783 | #if MSPACES
|
---|
4784 |
|
---|
4785 | static mstate init_user_mstate(char* tbase, size_t tsize) {
|
---|
4786 | size_t msize = pad_request(sizeof(struct malloc_state));
|
---|
4787 | mchunkptr mn;
|
---|
4788 | mchunkptr msp = align_as_chunk(tbase);
|
---|
4789 | mstate m = (mstate)(chunk2mem(msp));
|
---|
4790 | memset(m, 0, msize);
|
---|
4791 | INITIAL_LOCK(&m->mutex);
|
---|
4792 | msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
|
---|
4793 | m->seg.base = m->least_addr = tbase;
|
---|
4794 | m->seg.size = m->footprint = m->max_footprint = tsize;
|
---|
4795 | m->magic = mparams.magic;
|
---|
4796 | m->release_checks = MAX_RELEASE_CHECK_RATE;
|
---|
4797 | m->mflags = mparams.default_mflags;
|
---|
4798 | m->extp = 0;
|
---|
4799 | m->exts = 0;
|
---|
4800 | disable_contiguous(m);
|
---|
4801 | init_bins(m);
|
---|
4802 | mn = next_chunk(mem2chunk(m));
|
---|
4803 | init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
|
---|
4804 | check_top_chunk(m, m->top);
|
---|
4805 | return m;
|
---|
4806 | }
|
---|
4807 |
|
---|
4808 | mspace create_mspace(size_t capacity, int locked) {
|
---|
4809 | mstate m = 0;
|
---|
4810 | size_t msize = pad_request(sizeof(struct malloc_state));
|
---|
4811 | init_mparams(); /* Ensure pagesize etc initialized */
|
---|
4812 |
|
---|
4813 | if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
|
---|
4814 | size_t rs = ((capacity == 0)? mparams.granularity :
|
---|
4815 | (capacity + TOP_FOOT_SIZE + msize));
|
---|
4816 | size_t tsize = granularity_align(rs);
|
---|
4817 | char* tbase = (char*)(CALL_MMAP(tsize));
|
---|
4818 | if (tbase != CMFAIL) {
|
---|
4819 | m = init_user_mstate(tbase, tsize);
|
---|
4820 | m->seg.sflags = IS_MMAPPED_BIT;
|
---|
4821 | set_lock(m, locked);
|
---|
4822 | }
|
---|
4823 | }
|
---|
4824 | return (mspace)m;
|
---|
4825 | }
|
---|
4826 |
|
---|
4827 | mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
|
---|
4828 | mstate m = 0;
|
---|
4829 | size_t msize = pad_request(sizeof(struct malloc_state));
|
---|
4830 | init_mparams(); /* Ensure pagesize etc initialized */
|
---|
4831 |
|
---|
4832 | if (capacity > msize + TOP_FOOT_SIZE &&
|
---|
4833 | capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
|
---|
4834 | m = init_user_mstate((char*)base, capacity);
|
---|
4835 | m->seg.sflags = EXTERN_BIT;
|
---|
4836 | set_lock(m, locked);
|
---|
4837 | }
|
---|
4838 | return (mspace)m;
|
---|
4839 | }
|
---|
4840 |
|
---|
4841 | size_t destroy_mspace(mspace msp) {
|
---|
4842 | size_t freed = 0;
|
---|
4843 | mstate ms = (mstate)msp;
|
---|
4844 | if (ok_magic(ms)) {
|
---|
4845 | msegmentptr sp = &ms->seg;
|
---|
4846 | while (sp != 0) {
|
---|
4847 | char* base = sp->base;
|
---|
4848 | size_t size = sp->size;
|
---|
4849 | flag_t flag = sp->sflags;
|
---|
4850 | sp = sp->next;
|
---|
4851 | if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
|
---|
4852 | CALL_MUNMAP(base, size) == 0)
|
---|
4853 | freed += size;
|
---|
4854 | }
|
---|
4855 | }
|
---|
4856 | else {
|
---|
4857 | USAGE_ERROR_ACTION(ms,ms);
|
---|
4858 | }
|
---|
4859 | return freed;
|
---|
4860 | }
|
---|
4861 |
|
---|
4862 | /*
|
---|
4863 | mspace versions of routines are near-clones of the global
|
---|
4864 | versions. This is not so nice but better than the alternatives.
|
---|
4865 | */
|
---|
4866 |
|
---|
4867 |
|
---|
4868 | void* mspace_malloc(mspace msp, size_t bytes) {
|
---|
4869 | mstate ms = (mstate)msp;
|
---|
4870 | if (!ok_magic(ms)) {
|
---|
4871 | USAGE_ERROR_ACTION(ms,ms);
|
---|
4872 | return 0;
|
---|
4873 | }
|
---|
4874 | if (!PREACTION(ms)) {
|
---|
4875 | void* mem;
|
---|
4876 | size_t nb;
|
---|
4877 | if (bytes <= MAX_SMALL_REQUEST) {
|
---|
4878 | bindex_t idx;
|
---|
4879 | binmap_t smallbits;
|
---|
4880 | nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
|
---|
4881 | idx = small_index(nb);
|
---|
4882 | smallbits = ms->smallmap >> idx;
|
---|
4883 |
|
---|
4884 | if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
|
---|
4885 | mchunkptr b, p;
|
---|
4886 | idx += ~smallbits & 1; /* Uses next bin if idx empty */
|
---|
4887 | b = smallbin_at(ms, idx);
|
---|
4888 | p = b->fd;
|
---|
4889 | assert(chunksize(p) == small_index2size(idx));
|
---|
4890 | unlink_first_small_chunk(ms, b, p, idx);
|
---|
4891 | set_inuse_and_pinuse(ms, p, small_index2size(idx));
|
---|
4892 | mem = chunk2mem(p);
|
---|
4893 | check_malloced_chunk(ms, mem, nb);
|
---|
4894 | goto postaction;
|
---|
4895 | }
|
---|
4896 |
|
---|
4897 | else if (nb > ms->dvsize) {
|
---|
4898 | if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
|
---|
4899 | mchunkptr b, p, r;
|
---|
4900 | size_t rsize;
|
---|
4901 | bindex_t i;
|
---|
4902 | binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
|
---|
4903 | binmap_t leastbit = least_bit(leftbits);
|
---|
4904 | compute_bit2idx(leastbit, i);
|
---|
4905 | b = smallbin_at(ms, i);
|
---|
4906 | p = b->fd;
|
---|
4907 | assert(chunksize(p) == small_index2size(i));
|
---|
4908 | unlink_first_small_chunk(ms, b, p, i);
|
---|
4909 | rsize = small_index2size(i) - nb;
|
---|
4910 | /* Fit here cannot be remainderless if 4byte sizes */
|
---|
4911 | if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
|
---|
4912 | set_inuse_and_pinuse(ms, p, small_index2size(i));
|
---|
4913 | else {
|
---|
4914 | set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
|
---|
4915 | r = chunk_plus_offset(p, nb);
|
---|
4916 | set_size_and_pinuse_of_free_chunk(r, rsize);
|
---|
4917 | replace_dv(ms, r, rsize);
|
---|
4918 | }
|
---|
4919 | mem = chunk2mem(p);
|
---|
4920 | check_malloced_chunk(ms, mem, nb);
|
---|
4921 | goto postaction;
|
---|
4922 | }
|
---|
4923 |
|
---|
4924 | else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
|
---|
4925 | check_malloced_chunk(ms, mem, nb);
|
---|
4926 | goto postaction;
|
---|
4927 | }
|
---|
4928 | }
|
---|
4929 | }
|
---|
4930 | else if (bytes >= MAX_REQUEST)
|
---|
4931 | nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
|
---|
4932 | else {
|
---|
4933 | nb = pad_request(bytes);
|
---|
4934 | if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
|
---|
4935 | check_malloced_chunk(ms, mem, nb);
|
---|
4936 | goto postaction;
|
---|
4937 | }
|
---|
4938 | }
|
---|
4939 |
|
---|
4940 | if (nb <= ms->dvsize) {
|
---|
4941 | size_t rsize = ms->dvsize - nb;
|
---|
4942 | mchunkptr p = ms->dv;
|
---|
4943 | if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
|
---|
4944 | mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
|
---|
4945 | ms->dvsize = rsize;
|
---|
4946 | set_size_and_pinuse_of_free_chunk(r, rsize);
|
---|
4947 | set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
|
---|
4948 | }
|
---|
4949 | else { /* exhaust dv */
|
---|
4950 | size_t dvs = ms->dvsize;
|
---|
4951 | ms->dvsize = 0;
|
---|
4952 | ms->dv = 0;
|
---|
4953 | set_inuse_and_pinuse(ms, p, dvs);
|
---|
4954 | }
|
---|
4955 | mem = chunk2mem(p);
|
---|
4956 | check_malloced_chunk(ms, mem, nb);
|
---|
4957 | goto postaction;
|
---|
4958 | }
|
---|
4959 |
|
---|
4960 | else if (nb < ms->topsize) { /* Split top */
|
---|
4961 | size_t rsize = ms->topsize -= nb;
|
---|
4962 | mchunkptr p = ms->top;
|
---|
4963 | mchunkptr r = ms->top = chunk_plus_offset(p, nb);
|
---|
4964 | r->head = rsize | PINUSE_BIT;
|
---|
4965 | set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
|
---|
4966 | mem = chunk2mem(p);
|
---|
4967 | check_top_chunk(ms, ms->top);
|
---|
4968 | check_malloced_chunk(ms, mem, nb);
|
---|
4969 | goto postaction;
|
---|
4970 | }
|
---|
4971 |
|
---|
4972 | mem = sys_alloc(ms, nb);
|
---|
4973 |
|
---|
4974 | postaction:
|
---|
4975 | POSTACTION(ms);
|
---|
4976 | return mem;
|
---|
4977 | }
|
---|
4978 |
|
---|
4979 | return 0;
|
---|
4980 | }
|
---|
4981 |
|
---|
4982 | void mspace_free(mspace msp, void* mem) {
|
---|
4983 | if (mem != 0) {
|
---|
4984 | mchunkptr p = mem2chunk(mem);
|
---|
4985 | #if FOOTERS
|
---|
4986 | mstate fm = get_mstate_for(p);
|
---|
4987 | #else /* FOOTERS */
|
---|
4988 | mstate fm = (mstate)msp;
|
---|
4989 | #endif /* FOOTERS */
|
---|
4990 | if (!ok_magic(fm)) {
|
---|
4991 | USAGE_ERROR_ACTION(fm, p);
|
---|
4992 | return;
|
---|
4993 | }
|
---|
4994 | if (!PREACTION(fm)) {
|
---|
4995 | check_inuse_chunk(fm, p);
|
---|
4996 | if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
|
---|
4997 | size_t psize = chunksize(p);
|
---|
4998 | mchunkptr next = chunk_plus_offset(p, psize);
|
---|
4999 | if (!pinuse(p)) {
|
---|
5000 | size_t prevsize = p->prev_foot;
|
---|
5001 | if ((prevsize & IS_MMAPPED_BIT) != 0) {
|
---|
5002 | prevsize &= ~IS_MMAPPED_BIT;
|
---|
5003 | psize += prevsize + MMAP_FOOT_PAD;
|
---|
5004 | if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
|
---|
5005 | fm->footprint -= psize;
|
---|
5006 | goto postaction;
|
---|
5007 | }
|
---|
5008 | else {
|
---|
5009 | mchunkptr prev = chunk_minus_offset(p, prevsize);
|
---|
5010 | psize += prevsize;
|
---|
5011 | p = prev;
|
---|
5012 | if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
|
---|
5013 | if (p != fm->dv) {
|
---|
5014 | unlink_chunk(fm, p, prevsize);
|
---|
5015 | }
|
---|
5016 | else if ((next->head & INUSE_BITS) == INUSE_BITS) {
|
---|
5017 | fm->dvsize = psize;
|
---|
5018 | set_free_with_pinuse(p, psize, next);
|
---|
5019 | goto postaction;
|
---|
5020 | }
|
---|
5021 | }
|
---|
5022 | else
|
---|
5023 | goto erroraction;
|
---|
5024 | }
|
---|
5025 | }
|
---|
5026 |
|
---|
5027 | if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
|
---|
5028 | if (!cinuse(next)) { /* consolidate forward */
|
---|
5029 | if (next == fm->top) {
|
---|
5030 | size_t tsize = fm->topsize += psize;
|
---|
5031 | fm->top = p;
|
---|
5032 | p->head = tsize | PINUSE_BIT;
|
---|
5033 | if (p == fm->dv) {
|
---|
5034 | fm->dv = 0;
|
---|
5035 | fm->dvsize = 0;
|
---|
5036 | }
|
---|
5037 | if (should_trim(fm, tsize))
|
---|
5038 | sys_trim(fm, 0);
|
---|
5039 | goto postaction;
|
---|
5040 | }
|
---|
5041 | else if (next == fm->dv) {
|
---|
5042 | size_t dsize = fm->dvsize += psize;
|
---|
5043 | fm->dv = p;
|
---|
5044 | set_size_and_pinuse_of_free_chunk(p, dsize);
|
---|
5045 | goto postaction;
|
---|
5046 | }
|
---|
5047 | else {
|
---|
5048 | size_t nsize = chunksize(next);
|
---|
5049 | psize += nsize;
|
---|
5050 | unlink_chunk(fm, next, nsize);
|
---|
5051 | set_size_and_pinuse_of_free_chunk(p, psize);
|
---|
5052 | if (p == fm->dv) {
|
---|
5053 | fm->dvsize = psize;
|
---|
5054 | goto postaction;
|
---|
5055 | }
|
---|
5056 | }
|
---|
5057 | }
|
---|
5058 | else
|
---|
5059 | set_free_with_pinuse(p, psize, next);
|
---|
5060 |
|
---|
5061 | if (is_small(psize)) {
|
---|
5062 | insert_small_chunk(fm, p, psize);
|
---|
5063 | check_free_chunk(fm, p);
|
---|
5064 | }
|
---|
5065 | else {
|
---|
5066 | tchunkptr tp = (tchunkptr)p;
|
---|
5067 | insert_large_chunk(fm, tp, psize);
|
---|
5068 | check_free_chunk(fm, p);
|
---|
5069 | if (--fm->release_checks == 0)
|
---|
5070 | release_unused_segments(fm);
|
---|
5071 | }
|
---|
5072 | goto postaction;
|
---|
5073 | }
|
---|
5074 | }
|
---|
5075 | erroraction:
|
---|
5076 | USAGE_ERROR_ACTION(fm, p);
|
---|
5077 | postaction:
|
---|
5078 | POSTACTION(fm);
|
---|
5079 | }
|
---|
5080 | }
|
---|
5081 | }
|
---|
5082 |
|
---|
5083 | void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
|
---|
5084 | void* mem;
|
---|
5085 | size_t req = 0;
|
---|
5086 | mstate ms = (mstate)msp;
|
---|
5087 | if (!ok_magic(ms)) {
|
---|
5088 | USAGE_ERROR_ACTION(ms,ms);
|
---|
5089 | return 0;
|
---|
5090 | }
|
---|
5091 | if (n_elements != 0) {
|
---|
5092 | req = n_elements * elem_size;
|
---|
5093 | if (((n_elements | elem_size) & ~(size_t)0xffff) &&
|
---|
5094 | (req / n_elements != elem_size))
|
---|
5095 | req = MAX_SIZE_T; /* force downstream failure on overflow */
|
---|
5096 | }
|
---|
5097 | mem = internal_malloc(ms, req);
|
---|
5098 | if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
|
---|
5099 | memset(mem, 0, req);
|
---|
5100 | return mem;
|
---|
5101 | }
|
---|
5102 |
|
---|
5103 | void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
|
---|
5104 | if (oldmem == 0)
|
---|
5105 | return mspace_malloc(msp, bytes);
|
---|
5106 | #ifdef REALLOC_ZERO_BYTES_FREES
|
---|
5107 | if (bytes == 0) {
|
---|
5108 | mspace_free(msp, oldmem);
|
---|
5109 | return 0;
|
---|
5110 | }
|
---|
5111 | #endif /* REALLOC_ZERO_BYTES_FREES */
|
---|
5112 | else {
|
---|
5113 | #if FOOTERS
|
---|
5114 | mchunkptr p = mem2chunk(oldmem);
|
---|
5115 | mstate ms = get_mstate_for(p);
|
---|
5116 | #else /* FOOTERS */
|
---|
5117 | mstate ms = (mstate)msp;
|
---|
5118 | #endif /* FOOTERS */
|
---|
5119 | if (!ok_magic(ms)) {
|
---|
5120 | USAGE_ERROR_ACTION(ms,ms);
|
---|
5121 | return 0;
|
---|
5122 | }
|
---|
5123 | return internal_realloc(ms, oldmem, bytes);
|
---|
5124 | }
|
---|
5125 | }
|
---|
5126 |
|
---|
5127 | void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
|
---|
5128 | mstate ms = (mstate)msp;
|
---|
5129 | if (!ok_magic(ms)) {
|
---|
5130 | USAGE_ERROR_ACTION(ms,ms);
|
---|
5131 | return 0;
|
---|
5132 | }
|
---|
5133 | return internal_memalign(ms, alignment, bytes);
|
---|
5134 | }
|
---|
5135 |
|
---|
5136 | void** mspace_independent_calloc(mspace msp, size_t n_elements,
|
---|
5137 | size_t elem_size, void* chunks[]) {
|
---|
5138 | size_t sz = elem_size; /* serves as 1-element array */
|
---|
5139 | mstate ms = (mstate)msp;
|
---|
5140 | if (!ok_magic(ms)) {
|
---|
5141 | USAGE_ERROR_ACTION(ms,ms);
|
---|
5142 | return 0;
|
---|
5143 | }
|
---|
5144 | return ialloc(ms, n_elements, &sz, 3, chunks);
|
---|
5145 | }
|
---|
5146 |
|
---|
5147 | void** mspace_independent_comalloc(mspace msp, size_t n_elements,
|
---|
5148 | size_t sizes[], void* chunks[]) {
|
---|
5149 | mstate ms = (mstate)msp;
|
---|
5150 | if (!ok_magic(ms)) {
|
---|
5151 | USAGE_ERROR_ACTION(ms,ms);
|
---|
5152 | return 0;
|
---|
5153 | }
|
---|
5154 | return ialloc(ms, n_elements, sizes, 0, chunks);
|
---|
5155 | }
|
---|
5156 |
|
---|
5157 | int mspace_trim(mspace msp, size_t pad) {
|
---|
5158 | int result = 0;
|
---|
5159 | mstate ms = (mstate)msp;
|
---|
5160 | if (ok_magic(ms)) {
|
---|
5161 | if (!PREACTION(ms)) {
|
---|
5162 | result = sys_trim(ms, pad);
|
---|
5163 | POSTACTION(ms);
|
---|
5164 | }
|
---|
5165 | }
|
---|
5166 | else {
|
---|
5167 | USAGE_ERROR_ACTION(ms,ms);
|
---|
5168 | }
|
---|
5169 | return result;
|
---|
5170 | }
|
---|
5171 |
|
---|
5172 | void mspace_malloc_stats(mspace msp) {
|
---|
5173 | mstate ms = (mstate)msp;
|
---|
5174 | if (ok_magic(ms)) {
|
---|
5175 | internal_malloc_stats(ms);
|
---|
5176 | }
|
---|
5177 | else {
|
---|
5178 | USAGE_ERROR_ACTION(ms,ms);
|
---|
5179 | }
|
---|
5180 | }
|
---|
5181 |
|
---|
5182 | size_t mspace_footprint(mspace msp) {
|
---|
5183 | size_t result = 0;
|
---|
5184 | mstate ms = (mstate)msp;
|
---|
5185 | if (ok_magic(ms)) {
|
---|
5186 | result = ms->footprint;
|
---|
5187 | }
|
---|
5188 | else {
|
---|
5189 | USAGE_ERROR_ACTION(ms,ms);
|
---|
5190 | }
|
---|
5191 | return result;
|
---|
5192 | }
|
---|
5193 |
|
---|
5194 |
|
---|
5195 | size_t mspace_max_footprint(mspace msp) {
|
---|
5196 | size_t result = 0;
|
---|
5197 | mstate ms = (mstate)msp;
|
---|
5198 | if (ok_magic(ms)) {
|
---|
5199 | result = ms->max_footprint;
|
---|
5200 | }
|
---|
5201 | else {
|
---|
5202 | USAGE_ERROR_ACTION(ms,ms);
|
---|
5203 | }
|
---|
5204 | return result;
|
---|
5205 | }
|
---|
5206 |
|
---|
5207 |
|
---|
5208 | #if !NO_MALLINFO
|
---|
5209 | struct mallinfo mspace_mallinfo(mspace msp) {
|
---|
5210 | mstate ms = (mstate)msp;
|
---|
5211 | if (!ok_magic(ms)) {
|
---|
5212 | USAGE_ERROR_ACTION(ms,ms);
|
---|
5213 | }
|
---|
5214 | return internal_mallinfo(ms);
|
---|
5215 | }
|
---|
5216 | #endif /* NO_MALLINFO */
|
---|
5217 |
|
---|
5218 | size_t mspace_usable_size(void* mem) {
|
---|
5219 | if (mem != 0) {
|
---|
5220 | mchunkptr p = mem2chunk(mem);
|
---|
5221 | if (cinuse(p))
|
---|
5222 | return chunksize(p) - overhead_for(p);
|
---|
5223 | }
|
---|
5224 | return 0;
|
---|
5225 | }
|
---|
5226 |
|
---|
5227 | int mspace_mallopt(int param_number, int value) {
|
---|
5228 | return change_mparam(param_number, value);
|
---|
5229 | }
|
---|
5230 |
|
---|
5231 | #endif /* MSPACES */
|
---|
5232 |
|
---|
5233 | /* -------------------- Alternative MORECORE functions ------------------- */
|
---|
5234 |
|
---|
5235 | /*
|
---|
5236 | Guidelines for creating a custom version of MORECORE:
|
---|
5237 |
|
---|
5238 | * For best performance, MORECORE should allocate in multiples of pagesize.
|
---|
5239 | * MORECORE may allocate more memory than requested. (Or even less,
|
---|
5240 | but this will usually result in a malloc failure.)
|
---|
5241 | * MORECORE must not allocate memory when given argument zero, but
|
---|
5242 | instead return one past the end address of memory from previous
|
---|
5243 | nonzero call.
|
---|
5244 | * For best performance, consecutive calls to MORECORE with positive
|
---|
5245 | arguments should return increasing addresses, indicating that
|
---|
5246 | space has been contiguously extended.
|
---|
5247 | * Even though consecutive calls to MORECORE need not return contiguous
|
---|
5248 | addresses, it must be OK for malloc'ed chunks to span multiple
|
---|
5249 | regions in those cases where they do happen to be contiguous.
|
---|
5250 | * MORECORE need not handle negative arguments -- it may instead
|
---|
5251 | just return MFAIL when given negative arguments.
|
---|
5252 | Negative arguments are always multiples of pagesize. MORECORE
|
---|
5253 | must not misinterpret negative args as large positive unsigned
|
---|
5254 | args. You can suppress all such calls from even occurring by defining
|
---|
5255 | MORECORE_CANNOT_TRIM,
|
---|
5256 |
|
---|
5257 | As an example alternative MORECORE, here is a custom allocator
|
---|
5258 | kindly contributed for pre-OSX macOS. It uses virtually but not
|
---|
5259 | necessarily physically contiguous non-paged memory (locked in,
|
---|
5260 | present and won't get swapped out). You can use it by uncommenting
|
---|
5261 | this section, adding some #includes, and setting up the appropriate
|
---|
5262 | defines above:
|
---|
5263 |
|
---|
5264 | #define MORECORE osMoreCore
|
---|
5265 |
|
---|
5266 | There is also a shutdown routine that should somehow be called for
|
---|
5267 | cleanup upon program exit.
|
---|
5268 |
|
---|
5269 | #define MAX_POOL_ENTRIES 100
|
---|
5270 | #define MINIMUM_MORECORE_SIZE (64 * 1024U)
|
---|
5271 | static int next_os_pool;
|
---|
5272 | void *our_os_pools[MAX_POOL_ENTRIES];
|
---|
5273 |
|
---|
5274 | void *osMoreCore(int size)
|
---|
5275 | {
|
---|
5276 | void *ptr = 0;
|
---|
5277 | static void *sbrk_top = 0;
|
---|
5278 |
|
---|
5279 | if (size > 0)
|
---|
5280 | {
|
---|
5281 | if (size < MINIMUM_MORECORE_SIZE)
|
---|
5282 | size = MINIMUM_MORECORE_SIZE;
|
---|
5283 | if (CurrentExecutionLevel() == kTaskLevel)
|
---|
5284 | ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
|
---|
5285 | if (ptr == 0)
|
---|
5286 | {
|
---|
5287 | return (void *) MFAIL;
|
---|
5288 | }
|
---|
5289 | // save ptrs so they can be freed during cleanup
|
---|
5290 | our_os_pools[next_os_pool] = ptr;
|
---|
5291 | next_os_pool++;
|
---|
5292 | ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
|
---|
5293 | sbrk_top = (char *) ptr + size;
|
---|
5294 | return ptr;
|
---|
5295 | }
|
---|
5296 | else if (size < 0)
|
---|
5297 | {
|
---|
5298 | // we don't currently support shrink behavior
|
---|
5299 | return (void *) MFAIL;
|
---|
5300 | }
|
---|
5301 | else
|
---|
5302 | {
|
---|
5303 | return sbrk_top;
|
---|
5304 | }
|
---|
5305 | }
|
---|
5306 |
|
---|
5307 | // cleanup any allocated memory pools
|
---|
5308 | // called as last thing before shutting down driver
|
---|
5309 |
|
---|
5310 | void osCleanupMem(void)
|
---|
5311 | {
|
---|
5312 | void **ptr;
|
---|
5313 |
|
---|
5314 | for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
|
---|
5315 | if (*ptr)
|
---|
5316 | {
|
---|
5317 | PoolDeallocate(*ptr);
|
---|
5318 | *ptr = 0;
|
---|
5319 | }
|
---|
5320 | }
|
---|
5321 |
|
---|
5322 | */
|
---|
5323 |
|
---|
5324 |
|
---|
5325 | /* -----------------------------------------------------------------------
|
---|
5326 | History:
|
---|
5327 | V2.8.4 (not yet released)
|
---|
5328 | * Fix bad error check in mspace_footprint
|
---|
5329 | * Adaptations for ptmalloc, courtesy of Wolfram Gloger.
|
---|
5330 | * Reentrant spin locks, courtesy of Earl Chew and others
|
---|
5331 | * Win32 improvements, courtesy of Niall Douglas and Earl Chew
|
---|
5332 | * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options
|
---|
5333 | * Various small adjustments to reduce warnings on some compilers
|
---|
5334 | * Extension hook in malloc_state
|
---|
5335 |
|
---|
5336 | V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
|
---|
5337 | * Add max_footprint functions
|
---|
5338 | * Ensure all appropriate literals are size_t
|
---|
5339 | * Fix conditional compilation problem for some #define settings
|
---|
5340 | * Avoid concatenating segments with the one provided
|
---|
5341 | in create_mspace_with_base
|
---|
5342 | * Rename some variables to avoid compiler shadowing warnings
|
---|
5343 | * Use explicit lock initialization.
|
---|
5344 | * Better handling of sbrk interference.
|
---|
5345 | * Simplify and fix segment insertion, trimming and mspace_destroy
|
---|
5346 | * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
|
---|
5347 | * Thanks especially to Dennis Flanagan for help on these.
|
---|
5348 |
|
---|
5349 | V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
|
---|
5350 | * Fix memalign brace error.
|
---|
5351 |
|
---|
5352 | V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
|
---|
5353 | * Fix improper #endif nesting in C++
|
---|
5354 | * Add explicit casts needed for C++
|
---|
5355 |
|
---|
5356 | V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
|
---|
5357 | * Use trees for large bins
|
---|
5358 | * Support mspaces
|
---|
5359 | * Use segments to unify sbrk-based and mmap-based system allocation,
|
---|
5360 | removing need for emulation on most platforms without sbrk.
|
---|
5361 | * Default safety checks
|
---|
5362 | * Optional footer checks. Thanks to William Robertson for the idea.
|
---|
5363 | * Internal code refactoring
|
---|
5364 | * Incorporate suggestions and platform-specific changes.
|
---|
5365 | Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
|
---|
5366 | Aaron Bachmann, Emery Berger, and others.
|
---|
5367 | * Speed up non-fastbin processing enough to remove fastbins.
|
---|
5368 | * Remove useless cfree() to avoid conflicts with other apps.
|
---|
5369 | * Remove internal memcpy, memset. Compilers handle builtins better.
|
---|
5370 | * Remove some options that no one ever used and rename others.
|
---|
5371 |
|
---|
5372 | V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
|
---|
5373 | * Fix malloc_state bitmap array misdeclaration
|
---|
5374 |
|
---|
5375 | V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
|
---|
5376 | * Allow tuning of FIRST_SORTED_BIN_SIZE
|
---|
5377 | * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
|
---|
5378 | * Better detection and support for non-contiguousness of MORECORE.
|
---|
5379 | Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
|
---|
5380 | * Bypass most of malloc if no frees. Thanks To Emery Berger.
|
---|
5381 | * Fix freeing of old top non-contiguous chunk im sysmalloc.
|
---|
5382 | * Raised default trim and map thresholds to 256K.
|
---|
5383 | * Fix mmap-related #defines. Thanks to Lubos Lunak.
|
---|
5384 | * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
|
---|
5385 | * Branch-free bin calculation
|
---|
5386 | * Default trim and mmap thresholds now 256K.
|
---|
5387 |
|
---|
5388 | V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
|
---|
5389 | * Introduce independent_comalloc and independent_calloc.
|
---|
5390 | Thanks to Michael Pachos for motivation and help.
|
---|
5391 | * Make optional .h file available
|
---|
5392 | * Allow > 2GB requests on 32bit systems.
|
---|
5393 | * new WIN32 sbrk, mmap, munmap, lock code from <[email protected]>.
|
---|
5394 | Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
|
---|
5395 | and Anonymous.
|
---|
5396 | * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
|
---|
5397 | helping test this.)
|
---|
5398 | * memalign: check alignment arg
|
---|
5399 | * realloc: don't try to shift chunks backwards, since this
|
---|
5400 | leads to more fragmentation in some programs and doesn't
|
---|
5401 | seem to help in any others.
|
---|
5402 | * Collect all cases in malloc requiring system memory into sysmalloc
|
---|
5403 | * Use mmap as backup to sbrk
|
---|
5404 | * Place all internal state in malloc_state
|
---|
5405 | * Introduce fastbins (although similar to 2.5.1)
|
---|
5406 | * Many minor tunings and cosmetic improvements
|
---|
5407 | * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
|
---|
5408 | * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
|
---|
5409 | Thanks to Tony E. Bennett <[email protected]> and others.
|
---|
5410 | * Include errno.h to support default failure action.
|
---|
5411 |
|
---|
5412 | V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
|
---|
5413 | * return null for negative arguments
|
---|
5414 | * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
|
---|
5415 | * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
|
---|
5416 | (e.g. WIN32 platforms)
|
---|
5417 | * Cleanup header file inclusion for WIN32 platforms
|
---|
5418 | * Cleanup code to avoid Microsoft Visual C++ compiler complaints
|
---|
5419 | * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
|
---|
5420 | memory allocation routines
|
---|
5421 | * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
|
---|
5422 | * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
|
---|
5423 | usage of 'assert' in non-WIN32 code
|
---|
5424 | * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
|
---|
5425 | avoid infinite loop
|
---|
5426 | * Always call 'fREe()' rather than 'free()'
|
---|
5427 |
|
---|
5428 | V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
|
---|
5429 | * Fixed ordering problem with boundary-stamping
|
---|
5430 |
|
---|
5431 | V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
|
---|
5432 | * Added pvalloc, as recommended by H.J. Liu
|
---|
5433 | * Added 64bit pointer support mainly from Wolfram Gloger
|
---|
5434 | * Added anonymously donated WIN32 sbrk emulation
|
---|
5435 | * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
|
---|
5436 | * malloc_extend_top: fix mask error that caused wastage after
|
---|
5437 | foreign sbrks
|
---|
5438 | * Add linux mremap support code from HJ Liu
|
---|
5439 |
|
---|
5440 | V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
|
---|
5441 | * Integrated most documentation with the code.
|
---|
5442 | * Add support for mmap, with help from
|
---|
5443 | Wolfram Gloger ([email protected]).
|
---|
5444 | * Use last_remainder in more cases.
|
---|
5445 | * Pack bins using idea from [email protected]
|
---|
5446 | * Use ordered bins instead of best-fit threshhold
|
---|
5447 | * Eliminate block-local decls to simplify tracing and debugging.
|
---|
5448 | * Support another case of realloc via move into top
|
---|
5449 | * Fix error occuring when initial sbrk_base not word-aligned.
|
---|
5450 | * Rely on page size for units instead of SBRK_UNIT to
|
---|
5451 | avoid surprises about sbrk alignment conventions.
|
---|
5452 | * Add mallinfo, mallopt. Thanks to Raymond Nijssen
|
---|
5453 | ([email protected]) for the suggestion.
|
---|
5454 | * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
|
---|
5455 | * More precautions for cases where other routines call sbrk,
|
---|
5456 | courtesy of Wolfram Gloger ([email protected]).
|
---|
5457 | * Added macros etc., allowing use in linux libc from
|
---|
5458 | H.J. Lu ([email protected])
|
---|
5459 | * Inverted this history list
|
---|
5460 |
|
---|
5461 | V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
|
---|
5462 | * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
|
---|
5463 | * Removed all preallocation code since under current scheme
|
---|
5464 | the work required to undo bad preallocations exceeds
|
---|
5465 | the work saved in good cases for most test programs.
|
---|
5466 | * No longer use return list or unconsolidated bins since
|
---|
5467 | no scheme using them consistently outperforms those that don't
|
---|
5468 | given above changes.
|
---|
5469 | * Use best fit for very large chunks to prevent some worst-cases.
|
---|
5470 | * Added some support for debugging
|
---|
5471 |
|
---|
5472 | V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
|
---|
5473 | * Removed footers when chunks are in use. Thanks to
|
---|
5474 | Paul Wilson ([email protected]) for the suggestion.
|
---|
5475 |
|
---|
5476 | V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
|
---|
5477 | * Added malloc_trim, with help from Wolfram Gloger
|
---|
5478 | ([email protected]).
|
---|
5479 |
|
---|
5480 | V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
|
---|
5481 |
|
---|
5482 | V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
|
---|
5483 | * realloc: try to expand in both directions
|
---|
5484 | * malloc: swap order of clean-bin strategy;
|
---|
5485 | * realloc: only conditionally expand backwards
|
---|
5486 | * Try not to scavenge used bins
|
---|
5487 | * Use bin counts as a guide to preallocation
|
---|
5488 | * Occasionally bin return list chunks in first scan
|
---|
5489 | * Add a few optimizations from [email protected]
|
---|
5490 |
|
---|
5491 | V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
|
---|
5492 | * faster bin computation & slightly different binning
|
---|
5493 | * merged all consolidations to one part of malloc proper
|
---|
5494 | (eliminating old malloc_find_space & malloc_clean_bin)
|
---|
5495 | * Scan 2 returns chunks (not just 1)
|
---|
5496 | * Propagate failure in realloc if malloc returns 0
|
---|
5497 | * Add stuff to allow compilation on non-ANSI compilers
|
---|
5498 | from [email protected]
|
---|
5499 |
|
---|
5500 | V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
|
---|
5501 | * removed potential for odd address access in prev_chunk
|
---|
5502 | * removed dependency on getpagesize.h
|
---|
5503 | * misc cosmetics and a bit more internal documentation
|
---|
5504 | * anticosmetics: mangled names in macros to evade debugger strangeness
|
---|
5505 | * tested on sparc, hp-700, dec-mips, rs6000
|
---|
5506 | with gcc & native cc (hp, dec only) allowing
|
---|
5507 | Detlefs & Zorn comparison study (in SIGPLAN Notices.)
|
---|
5508 |
|
---|
5509 | Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
|
---|
5510 | * Based loosely on libg++-1.2X malloc. (It retains some of the overall
|
---|
5511 | structure of old version, but most details differ.)
|
---|
5512 |
|
---|
5513 | */
|
---|
5514 |
|
---|
5515 |
|
---|