| 1 | /*
|
|---|
| 2 | * jquant2.c
|
|---|
| 3 | *
|
|---|
| 4 | * Copyright (C) 1991-1996, Thomas G. Lane.
|
|---|
| 5 | * This file is part of the Independent JPEG Group's software.
|
|---|
| 6 | * For conditions of distribution and use, see the accompanying README file.
|
|---|
| 7 | *
|
|---|
| 8 | * This file contains 2-pass color quantization (color mapping) routines.
|
|---|
| 9 | * These routines provide selection of a custom color map for an image,
|
|---|
| 10 | * followed by mapping of the image to that color map, with optional
|
|---|
| 11 | * Floyd-Steinberg dithering.
|
|---|
| 12 | * It is also possible to use just the second pass to map to an arbitrary
|
|---|
| 13 | * externally-given color map.
|
|---|
| 14 | *
|
|---|
| 15 | * Note: ordered dithering is not supported, since there isn't any fast
|
|---|
| 16 | * way to compute intercolor distances; it's unclear that ordered dither's
|
|---|
| 17 | * fundamental assumptions even hold with an irregularly spaced color map.
|
|---|
| 18 | */
|
|---|
| 19 |
|
|---|
| 20 | #define JPEG_INTERNALS
|
|---|
| 21 | #include "jinclude.h"
|
|---|
| 22 | #include "jpeglib.h"
|
|---|
| 23 |
|
|---|
| 24 | #ifdef QUANT_2PASS_SUPPORTED
|
|---|
| 25 |
|
|---|
| 26 |
|
|---|
| 27 | /*
|
|---|
| 28 | * This module implements the well-known Heckbert paradigm for color
|
|---|
| 29 | * quantization. Most of the ideas used here can be traced back to
|
|---|
| 30 | * Heckbert's seminal paper
|
|---|
| 31 | * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
|
|---|
| 32 | * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
|
|---|
| 33 | *
|
|---|
| 34 | * In the first pass over the image, we accumulate a histogram showing the
|
|---|
| 35 | * usage count of each possible color. To keep the histogram to a reasonable
|
|---|
| 36 | * size, we reduce the precision of the input; typical practice is to retain
|
|---|
| 37 | * 5 or 6 bits per color, so that 8 or 4 different input values are counted
|
|---|
| 38 | * in the same histogram cell.
|
|---|
| 39 | *
|
|---|
| 40 | * Next, the color-selection step begins with a box representing the whole
|
|---|
| 41 | * color space, and repeatedly splits the "largest" remaining box until we
|
|---|
| 42 | * have as many boxes as desired colors. Then the mean color in each
|
|---|
| 43 | * remaining box becomes one of the possible output colors.
|
|---|
| 44 | *
|
|---|
| 45 | * The second pass over the image maps each input pixel to the closest output
|
|---|
| 46 | * color (optionally after applying a Floyd-Steinberg dithering correction).
|
|---|
| 47 | * This mapping is logically trivial, but making it go fast enough requires
|
|---|
| 48 | * considerable care.
|
|---|
| 49 | *
|
|---|
| 50 | * Heckbert-style quantizers vary a good deal in their policies for choosing
|
|---|
| 51 | * the "largest" box and deciding where to cut it. The particular policies
|
|---|
| 52 | * used here have proved out well in experimental comparisons, but better ones
|
|---|
| 53 | * may yet be found.
|
|---|
| 54 | *
|
|---|
| 55 | * In earlier versions of the IJG code, this module quantized in YCbCr color
|
|---|
| 56 | * space, processing the raw upsampled data without a color conversion step.
|
|---|
| 57 | * This allowed the color conversion math to be done only once per colormap
|
|---|
| 58 | * entry, not once per pixel. However, that optimization precluded other
|
|---|
| 59 | * useful optimizations (such as merging color conversion with upsampling)
|
|---|
| 60 | * and it also interfered with desired capabilities such as quantizing to an
|
|---|
| 61 | * externally-supplied colormap. We have therefore abandoned that approach.
|
|---|
| 62 | * The present code works in the post-conversion color space, typically RGB.
|
|---|
| 63 | *
|
|---|
| 64 | * To improve the visual quality of the results, we actually work in scaled
|
|---|
| 65 | * RGB space, giving G distances more weight than R, and R in turn more than
|
|---|
| 66 | * B. To do everything in integer math, we must use integer scale factors.
|
|---|
| 67 | * The 2/3/1 scale factors used here correspond loosely to the relative
|
|---|
| 68 | * weights of the colors in the NTSC grayscale equation.
|
|---|
| 69 | * If you want to use this code to quantize a non-RGB color space, you'll
|
|---|
| 70 | * probably need to change these scale factors.
|
|---|
| 71 | */
|
|---|
| 72 |
|
|---|
| 73 | #define R_SCALE 2 /* scale R distances by this much */
|
|---|
| 74 | #define G_SCALE 3 /* scale G distances by this much */
|
|---|
| 75 | #define B_SCALE 1 /* and B by this much */
|
|---|
| 76 |
|
|---|
| 77 | /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
|
|---|
| 78 | * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
|
|---|
| 79 | * and B,G,R orders. If you define some other weird order in jmorecfg.h,
|
|---|
| 80 | * you'll get compile errors until you extend this logic. In that case
|
|---|
| 81 | * you'll probably want to tweak the histogram sizes too.
|
|---|
| 82 | */
|
|---|
| 83 |
|
|---|
| 84 | #if RGB_RED == 0
|
|---|
| 85 | #define C0_SCALE R_SCALE
|
|---|
| 86 | #endif
|
|---|
| 87 | #if RGB_BLUE == 0
|
|---|
| 88 | #define C0_SCALE B_SCALE
|
|---|
| 89 | #endif
|
|---|
| 90 | #if RGB_GREEN == 1
|
|---|
| 91 | #define C1_SCALE G_SCALE
|
|---|
| 92 | #endif
|
|---|
| 93 | #if RGB_RED == 2
|
|---|
| 94 | #define C2_SCALE R_SCALE
|
|---|
| 95 | #endif
|
|---|
| 96 | #if RGB_BLUE == 2
|
|---|
| 97 | #define C2_SCALE B_SCALE
|
|---|
| 98 | #endif
|
|---|
| 99 |
|
|---|
| 100 |
|
|---|
| 101 | /*
|
|---|
| 102 | * First we have the histogram data structure and routines for creating it.
|
|---|
| 103 | *
|
|---|
| 104 | * The number of bits of precision can be adjusted by changing these symbols.
|
|---|
| 105 | * We recommend keeping 6 bits for G and 5 each for R and B.
|
|---|
| 106 | * If you have plenty of memory and cycles, 6 bits all around gives marginally
|
|---|
| 107 | * better results; if you are short of memory, 5 bits all around will save
|
|---|
| 108 | * some space but degrade the results.
|
|---|
| 109 | * To maintain a fully accurate histogram, we'd need to allocate a "long"
|
|---|
| 110 | * (preferably unsigned long) for each cell. In practice this is overkill;
|
|---|
| 111 | * we can get by with 16 bits per cell. Few of the cell counts will overflow,
|
|---|
| 112 | * and clamping those that do overflow to the maximum value will give close-
|
|---|
| 113 | * enough results. This reduces the recommended histogram size from 256Kb
|
|---|
| 114 | * to 128Kb, which is a useful savings on PC-class machines.
|
|---|
| 115 | * (In the second pass the histogram space is re-used for pixel mapping data;
|
|---|
| 116 | * in that capacity, each cell must be able to store zero to the number of
|
|---|
| 117 | * desired colors. 16 bits/cell is plenty for that too.)
|
|---|
| 118 | * Since the JPEG code is intended to run in small memory model on 80x86
|
|---|
| 119 | * machines, we can't just allocate the histogram in one chunk. Instead
|
|---|
| 120 | * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
|
|---|
| 121 | * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
|
|---|
| 122 | * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
|
|---|
| 123 | * on 80x86 machines, the pointer row is in near memory but the actual
|
|---|
| 124 | * arrays are in far memory (same arrangement as we use for image arrays).
|
|---|
| 125 | */
|
|---|
| 126 |
|
|---|
| 127 | #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
|
|---|
| 128 |
|
|---|
| 129 | /* These will do the right thing for either R,G,B or B,G,R color order,
|
|---|
| 130 | * but you may not like the results for other color orders.
|
|---|
| 131 | */
|
|---|
| 132 | #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
|
|---|
| 133 | #define HIST_C1_BITS 6 /* bits of precision in G histogram */
|
|---|
| 134 | #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
|
|---|
| 135 |
|
|---|
| 136 | /* Number of elements along histogram axes. */
|
|---|
| 137 | #define HIST_C0_ELEMS (1<<HIST_C0_BITS)
|
|---|
| 138 | #define HIST_C1_ELEMS (1<<HIST_C1_BITS)
|
|---|
| 139 | #define HIST_C2_ELEMS (1<<HIST_C2_BITS)
|
|---|
| 140 |
|
|---|
| 141 | /* These are the amounts to shift an input value to get a histogram index. */
|
|---|
| 142 | #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
|
|---|
| 143 | #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
|
|---|
| 144 | #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
|
|---|
| 145 |
|
|---|
| 146 |
|
|---|
| 147 | typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
|
|---|
| 148 |
|
|---|
| 149 | typedef histcell FAR * histptr; /* for pointers to histogram cells */
|
|---|
| 150 |
|
|---|
| 151 | typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
|
|---|
| 152 | typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */
|
|---|
| 153 | typedef hist2d * hist3d; /* type for top-level pointer */
|
|---|
| 154 |
|
|---|
| 155 |
|
|---|
| 156 | /* Declarations for Floyd-Steinberg dithering.
|
|---|
| 157 | *
|
|---|
| 158 | * Errors are accumulated into the array fserrors[], at a resolution of
|
|---|
| 159 | * 1/16th of a pixel count. The error at a given pixel is propagated
|
|---|
| 160 | * to its not-yet-processed neighbors using the standard F-S fractions,
|
|---|
| 161 | * ... (here) 7/16
|
|---|
| 162 | * 3/16 5/16 1/16
|
|---|
| 163 | * We work left-to-right on even rows, right-to-left on odd rows.
|
|---|
| 164 | *
|
|---|
| 165 | * We can get away with a single array (holding one row's worth of errors)
|
|---|
| 166 | * by using it to store the current row's errors at pixel columns not yet
|
|---|
| 167 | * processed, but the next row's errors at columns already processed. We
|
|---|
| 168 | * need only a few extra variables to hold the errors immediately around the
|
|---|
| 169 | * current column. (If we are lucky, those variables are in registers, but
|
|---|
| 170 | * even if not, they're probably cheaper to access than array elements are.)
|
|---|
| 171 | *
|
|---|
| 172 | * The fserrors[] array has (#columns + 2) entries; the extra entry at
|
|---|
| 173 | * each end saves us from special-casing the first and last pixels.
|
|---|
| 174 | * Each entry is three values long, one value for each color component.
|
|---|
| 175 | *
|
|---|
| 176 | * Note: on a wide image, we might not have enough room in a PC's near data
|
|---|
| 177 | * segment to hold the error array; so it is allocated with alloc_large.
|
|---|
| 178 | */
|
|---|
| 179 |
|
|---|
| 180 | #if BITS_IN_JSAMPLE == 8
|
|---|
| 181 | typedef INT16 FSERROR; /* 16 bits should be enough */
|
|---|
| 182 | typedef int LOCFSERROR; /* use 'int' for calculation temps */
|
|---|
| 183 | #else
|
|---|
| 184 | typedef INT32 FSERROR; /* may need more than 16 bits */
|
|---|
| 185 | typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
|
|---|
| 186 | #endif
|
|---|
| 187 |
|
|---|
| 188 | typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
|
|---|
| 189 |
|
|---|
| 190 |
|
|---|
| 191 | /* Private subobject */
|
|---|
| 192 |
|
|---|
| 193 | typedef struct {
|
|---|
| 194 | struct jpeg_color_quantizer pub; /* public fields */
|
|---|
| 195 |
|
|---|
| 196 | /* Space for the eventually created colormap is stashed here */
|
|---|
| 197 | JSAMPARRAY sv_colormap; /* colormap allocated at init time */
|
|---|
| 198 | int desired; /* desired # of colors = size of colormap */
|
|---|
| 199 |
|
|---|
| 200 | /* Variables for accumulating image statistics */
|
|---|
| 201 | hist3d histogram; /* pointer to the histogram */
|
|---|
| 202 |
|
|---|
| 203 | boolean needs_zeroed; /* TRUE if next pass must zero histogram */
|
|---|
| 204 |
|
|---|
| 205 | /* Variables for Floyd-Steinberg dithering */
|
|---|
| 206 | FSERRPTR fserrors; /* accumulated errors */
|
|---|
| 207 | boolean on_odd_row; /* flag to remember which row we are on */
|
|---|
| 208 | int * error_limiter; /* table for clamping the applied error */
|
|---|
| 209 | } my_cquantizer;
|
|---|
| 210 |
|
|---|
| 211 | typedef my_cquantizer * my_cquantize_ptr;
|
|---|
| 212 |
|
|---|
| 213 |
|
|---|
| 214 | /*
|
|---|
| 215 | * Prescan some rows of pixels.
|
|---|
| 216 | * In this module the prescan simply updates the histogram, which has been
|
|---|
| 217 | * initialized to zeroes by start_pass.
|
|---|
| 218 | * An output_buf parameter is required by the method signature, but no data
|
|---|
| 219 | * is actually output (in fact the buffer controller is probably passing a
|
|---|
| 220 | * NULL pointer).
|
|---|
| 221 | */
|
|---|
| 222 |
|
|---|
| 223 | METHODDEF(void)
|
|---|
| 224 | prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
|---|
| 225 | JSAMPARRAY output_buf, int num_rows)
|
|---|
| 226 | {
|
|---|
| 227 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|---|
| 228 | register JSAMPROW ptr;
|
|---|
| 229 | register histptr histp;
|
|---|
| 230 | register hist3d histogram = cquantize->histogram;
|
|---|
| 231 | int row;
|
|---|
| 232 | JDIMENSION col;
|
|---|
| 233 | JDIMENSION width = cinfo->output_width;
|
|---|
| 234 |
|
|---|
| 235 | for (row = 0; row < num_rows; row++) {
|
|---|
| 236 | ptr = input_buf[row];
|
|---|
| 237 | for (col = width; col > 0; col--) {
|
|---|
| 238 | /* get pixel value and index into the histogram */
|
|---|
| 239 | histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
|
|---|
| 240 | [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
|
|---|
| 241 | [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
|
|---|
| 242 | /* increment, check for overflow and undo increment if so. */
|
|---|
| 243 | if (++(*histp) <= 0)
|
|---|
| 244 | (*histp)--;
|
|---|
| 245 | ptr += 3;
|
|---|
| 246 | }
|
|---|
| 247 | }
|
|---|
| 248 | }
|
|---|
| 249 |
|
|---|
| 250 |
|
|---|
| 251 | /*
|
|---|
| 252 | * Next we have the really interesting routines: selection of a colormap
|
|---|
| 253 | * given the completed histogram.
|
|---|
| 254 | * These routines work with a list of "boxes", each representing a rectangular
|
|---|
| 255 | * subset of the input color space (to histogram precision).
|
|---|
| 256 | */
|
|---|
| 257 |
|
|---|
| 258 | typedef struct {
|
|---|
| 259 | /* The bounds of the box (inclusive); expressed as histogram indexes */
|
|---|
| 260 | int c0min, c0max;
|
|---|
| 261 | int c1min, c1max;
|
|---|
| 262 | int c2min, c2max;
|
|---|
| 263 | /* The volume (actually 2-norm) of the box */
|
|---|
| 264 | INT32 volume;
|
|---|
| 265 | /* The number of nonzero histogram cells within this box */
|
|---|
| 266 | long colorcount;
|
|---|
| 267 | } box;
|
|---|
| 268 |
|
|---|
| 269 | typedef box * boxptr;
|
|---|
| 270 |
|
|---|
| 271 |
|
|---|
| 272 | LOCAL(boxptr)
|
|---|
| 273 | find_biggest_color_pop (boxptr boxlist, int numboxes)
|
|---|
| 274 | /* Find the splittable box with the largest color population */
|
|---|
| 275 | /* Returns NULL if no splittable boxes remain */
|
|---|
| 276 | {
|
|---|
| 277 | register boxptr boxp;
|
|---|
| 278 | register int i;
|
|---|
| 279 | register long maxc = 0;
|
|---|
| 280 | boxptr which = NULL;
|
|---|
| 281 |
|
|---|
| 282 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
|
|---|
| 283 | if (boxp->colorcount > maxc && boxp->volume > 0) {
|
|---|
| 284 | which = boxp;
|
|---|
| 285 | maxc = boxp->colorcount;
|
|---|
| 286 | }
|
|---|
| 287 | }
|
|---|
| 288 | return which;
|
|---|
| 289 | }
|
|---|
| 290 |
|
|---|
| 291 |
|
|---|
| 292 | LOCAL(boxptr)
|
|---|
| 293 | find_biggest_volume (boxptr boxlist, int numboxes)
|
|---|
| 294 | /* Find the splittable box with the largest (scaled) volume */
|
|---|
| 295 | /* Returns NULL if no splittable boxes remain */
|
|---|
| 296 | {
|
|---|
| 297 | register boxptr boxp;
|
|---|
| 298 | register int i;
|
|---|
| 299 | register INT32 maxv = 0;
|
|---|
| 300 | boxptr which = NULL;
|
|---|
| 301 |
|
|---|
| 302 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
|
|---|
| 303 | if (boxp->volume > maxv) {
|
|---|
| 304 | which = boxp;
|
|---|
| 305 | maxv = boxp->volume;
|
|---|
| 306 | }
|
|---|
| 307 | }
|
|---|
| 308 | return which;
|
|---|
| 309 | }
|
|---|
| 310 |
|
|---|
| 311 |
|
|---|
| 312 | LOCAL(void)
|
|---|
| 313 | update_box (j_decompress_ptr cinfo, boxptr boxp)
|
|---|
| 314 | /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
|
|---|
| 315 | /* and recompute its volume and population */
|
|---|
| 316 | {
|
|---|
| 317 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
|---|
| 318 | hist3d histogram = cquantize->histogram;
|
|---|
| 319 | histptr histp;
|
|---|
| 320 | int c0,c1,c2;
|
|---|
| 321 | int c0min,c0max,c1min,c1max,c2min,c2max;
|
|---|
| 322 | INT32 dist0,dist1,dist2;
|
|---|
| 323 | long ccount;
|
|---|
| 324 |
|
|---|
| 325 | c0min = boxp->c0min; c0max = boxp->c0max;
|
|---|
| 326 | c1min = boxp->c1min; c1max = boxp->c1max;
|
|---|
| 327 | c2min = boxp->c2min; c2max = boxp->c2max;
|
|---|
| 328 |
|
|---|
| 329 | if (c0max > c0min)
|
|---|
| 330 | for (c0 = c0min; c0 <= c0max; c0++)
|
|---|
| 331 | for (c1 = c1min; c1 <= c1max; c1++) {
|
|---|
| 332 | histp = & histogram[c0][c1][c2min];
|
|---|
| 333 | for (c2 = c2min; c2 <= c2max; c2++)
|
|---|
| 334 | if (*histp++ != 0) {
|
|---|
| 335 | boxp->c0min = c0min = c0;
|
|---|
| 336 | goto have_c0min;
|
|---|
| 337 | }
|
|---|
| 338 | }
|
|---|
| 339 | have_c0min:
|
|---|
| 340 | if (c0max > c0min)
|
|---|
| 341 | for (c0 = c0max; c0 >= c0min; c0--)
|
|---|
| 342 | for (c1 = c1min; c1 <= c1max; c1++) {
|
|---|
| 343 | histp = & histogram[c0][c1][c2min];
|
|---|
| 344 | for (c2 = c2min; c2 <= c2max; c2++)
|
|---|
| 345 | if (*histp++ != 0) {
|
|---|
| 346 | boxp->c0max = c0max = c0;
|
|---|
| 347 | goto have_c0max;
|
|---|
| 348 | }
|
|---|
| 349 | }
|
|---|
| 350 | have_c0max:
|
|---|
| 351 | if (c1max > c1min)
|
|---|
| 352 | for (c1 = c1min; c1 <= c1max; c1++)
|
|---|
| 353 | for (c0 = c0min; c0 <= c0max; c0++) {
|
|---|
| 354 | histp = & histogram[c0][c1][c2min];
|
|---|
| 355 | for (c2 = c2min; c2 <= c2max; c2++)
|
|---|
| 356 | if (*histp++ != 0) {
|
|---|
| 357 | boxp->c1min = c1min = c1;
|
|---|
| 358 | goto have_c1min;
|
|---|
| 359 | }
|
|---|
| 360 | }
|
|---|
| 361 | have_c1min:
|
|---|
| 362 | if (c1max > c1min)
|
|---|
| 363 | for (c1 = c1max; c1 >= c1min; c1--)
|
|---|
| 364 | for (c0 = c0min; c0 <= c0max; c0++) {
|
|---|
| 365 | histp = & histogram[c0][c1][c2min];
|
|---|
| 366 | for (c2 = c2min; c2 <= c2max; c2++)
|
|---|
| 367 | if (*histp++ != 0) {
|
|---|
| 368 | boxp->c1max = c1max = c1;
|
|---|
| 369 | goto have_c1max;
|
|---|
| 370 | }
|
|---|
| 371 | }
|
|---|
| 372 | have_c1max:
|
|---|
| 373 | if (c2max > c2min)
|
|---|
| 374 | for (c2 = c2min; c2 <= c2max; c2++)
|
|---|
| 375 | for (c0 = c0min; c0 <= c0max; c0++) {
|
|---|
| 376 | histp = & histogram[c0][c1min][c2];
|
|---|
| 377 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
|
|---|
| 378 | if (*histp != 0) {
|
|---|
| 379 | boxp->c2min = c2min = c2;
|
|---|
| 380 | goto have_c2min;
|
|---|
| 381 | }
|
|---|
| 382 | }
|
|---|
| 383 | have_c2min:
|
|---|
| 384 | if (c2max > c2min)
|
|---|
| 385 | for (c2 = c2max; c2 >= c2min; c2--)
|
|---|
| 386 | for (c0 = c0min; c0 <= c0max; c0++) {
|
|---|
| 387 | histp = & histogram[c0][c1min][c2];
|
|---|
| 388 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
|
|---|
| 389 | if (*histp != 0) {
|
|---|
| 390 | boxp->c2max = c2max = c2;
|
|---|
| 391 | goto have_c2max;
|
|---|
| 392 | }
|
|---|
| 393 | }
|
|---|
| 394 | have_c2max:
|
|---|
| 395 |
|
|---|
| 396 | /* Update box volume.
|
|---|
| 397 | * We use 2-norm rather than real volume here; this biases the method
|
|---|
| 398 | * against making long narrow boxes, and it has the side benefit that
|
|---|
| 399 | * a box is splittable iff norm > 0.
|
|---|
| 400 | * Since the differences are expressed in histogram-cell units,
|
|---|
| 401 | * we have to shift back to JSAMPLE units to get consistent distances;
|
|---|
| 402 | * after which, we scale according to the selected distance scale factors.
|
|---|
| 403 | */
|
|---|
| 404 | dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
|
|---|
| 405 | dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
|
|---|
| 406 | dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
|
|---|
| 407 | boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
|
|---|
| 408 |
|
|---|
| 409 | /* Now scan remaining volume of box and compute population */
|
|---|
| 410 | ccount = 0;
|
|---|
| 411 | for (c0 = c0min; c0 <= c0max; c0++)
|
|---|
| 412 | for (c1 = c1min; c1 <= c1max; c1++) {
|
|---|
| 413 | histp = & histogram[c0][c1][c2min];
|
|---|
| 414 | for (c2 = c2min; c2 <= c2max; c2++, histp++)
|
|---|
| 415 | if (*histp != 0) {
|
|---|
| 416 | ccount++;
|
|---|
| 417 | }
|
|---|
| 418 | }
|
|---|
| 419 | boxp->colorcount = ccount;
|
|---|
| 420 | }
|
|---|
| 421 |
|
|---|
| 422 |
|
|---|
| 423 | LOCAL(int)
|
|---|
| 424 | median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
|
|---|
| 425 | int desired_colors)
|
|---|
| 426 | /* Repeatedly select and split the largest box until we have enough boxes */
|
|---|
| 427 | {
|
|---|
| 428 | int n,lb;
|
|---|
| 429 | int c0,c1,c2,cmax;
|
|---|
| 430 | register boxptr b1,b2;
|
|---|
| 431 |
|
|---|
| 432 | while (numboxes < desired_colors) {
|
|---|
| 433 | /* Select box to split.
|
|---|
| 434 | * Current algorithm: by population for first half, then by volume.
|
|---|
| 435 | */
|
|---|
| 436 | if (numboxes*2 <= desired_colors) {
|
|---|
| 437 | b1 = find_biggest_color_pop(boxlist, numboxes);
|
|---|
| 438 | } else {
|
|---|
| 439 | b1 = find_biggest_volume(boxlist, numboxes);
|
|---|
| 440 | }
|
|---|
| 441 | if (b1 == NULL) /* no splittable boxes left! */
|
|---|
| 442 | break;
|
|---|
| 443 | b2 = &boxlist[numboxes]; /* where new box will go */
|
|---|
| 444 | /* Copy the color bounds to the new box. */
|
|---|
| 445 | b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
|
|---|
| 446 | b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
|
|---|
| 447 | /* Choose which axis to split the box on.
|
|---|
| 448 | * Current algorithm: longest scaled axis.
|
|---|
| 449 | * See notes in update_box about scaling distances.
|
|---|
| 450 | */
|
|---|
| 451 | c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
|
|---|
| 452 | c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
|
|---|
| 453 | c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
|
|---|
| 454 | /* We want to break any ties in favor of green, then red, blue last.
|
|---|
| 455 | * This code does the right thing for R,G,B or B,G,R color orders only.
|
|---|
| 456 | */
|
|---|
| 457 | #if RGB_RED == 0
|
|---|
| 458 | cmax = c1; n = 1;
|
|---|
| 459 | if (c0 > cmax) { cmax = c0; n = 0; }
|
|---|
| 460 | if (c2 > cmax) { n = 2; }
|
|---|
| 461 | #else
|
|---|
| 462 | cmax = c1; n = 1;
|
|---|
| 463 | if (c2 > cmax) { cmax = c2; n = 2; }
|
|---|
| 464 | if (c0 > cmax) { n = 0; }
|
|---|
| 465 | #endif
|
|---|
| 466 | /* Choose split point along selected axis, and update box bounds.
|
|---|
| 467 | * Current algorithm: split at halfway point.
|
|---|
| 468 | * (Since the box has been shrunk to minimum volume,
|
|---|
| 469 | * any split will produce two nonempty subboxes.)
|
|---|
| 470 | * Note that lb value is max for lower box, so must be < old max.
|
|---|
| 471 | */
|
|---|
| 472 | switch (n) {
|
|---|
| 473 | case 0:
|
|---|
| 474 | lb = (b1->c0max + b1->c0min) / 2;
|
|---|
| 475 | b1->c0max = lb;
|
|---|
| 476 | b2->c0min = lb+1;
|
|---|
| 477 | break;
|
|---|
| 478 | case 1:
|
|---|
| 479 | lb = (b1->c1max + b1->c1min) / 2;
|
|---|
| 480 | b1->c1max = lb;
|
|---|
| 481 | b2->c1min = lb+1;
|
|---|
| 482 | break;
|
|---|
| 483 | case 2:
|
|---|
| 484 | lb = (b1->c2max + b1->c2min) / 2;
|
|---|
| 485 | b1->c2max = lb;
|
|---|
| 486 | b2->c2min = lb+1;
|
|---|
| 487 | break;
|
|---|
| 488 | }
|
|---|
| 489 | /* Update stats for boxes */
|
|---|
| 490 | update_box(cinfo, b1);
|
|---|
|
|---|