1 | /*
|
---|
2 | * jidctfst.c
|
---|
3 | *
|
---|
4 | * Copyright (C) 1994-1998, Thomas G. Lane.
|
---|
5 | * This file is part of the Independent JPEG Group's software.
|
---|
6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
7 | *
|
---|
8 | * This file contains a fast, not so accurate integer implementation of the
|
---|
9 | * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
---|
10 | * must also perform dequantization of the input coefficients.
|
---|
11 | *
|
---|
12 | * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
---|
13 | * on each row (or vice versa, but it's more convenient to emit a row at
|
---|
14 | * a time). Direct algorithms are also available, but they are much more
|
---|
15 | * complex and seem not to be any faster when reduced to code.
|
---|
16 | *
|
---|
17 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
---|
18 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
---|
19 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
---|
20 | * JPEG textbook (see REFERENCES section in file README). The following code
|
---|
21 | * is based directly on figure 4-8 in P&M.
|
---|
22 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
---|
23 | * possible to arrange the computation so that many of the multiplies are
|
---|
24 | * simple scalings of the final outputs. These multiplies can then be
|
---|
25 | * folded into the multiplications or divisions by the JPEG quantization
|
---|
26 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
---|
27 | * to be done in the DCT itself.
|
---|
28 | * The primary disadvantage of this method is that with fixed-point math,
|
---|
29 | * accuracy is lost due to imprecise representation of the scaled
|
---|
30 | * quantization values. The smaller the quantization table entry, the less
|
---|
31 | * precise the scaled value, so this implementation does worse with high-
|
---|
32 | * quality-setting files than with low-quality ones.
|
---|
33 | */
|
---|
34 |
|
---|
35 | #define JPEG_INTERNALS
|
---|
36 | #include "jinclude.h"
|
---|
37 | #include "jpeglib.h"
|
---|
38 | #include "jdct.h" /* Private declarations for DCT subsystem */
|
---|
39 |
|
---|
40 | #ifdef DCT_IFAST_SUPPORTED
|
---|
41 |
|
---|
42 |
|
---|
43 | /*
|
---|
44 | * This module is specialized to the case DCTSIZE = 8.
|
---|
45 | */
|
---|
46 |
|
---|
47 | #if DCTSIZE != 8
|
---|
48 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
---|
49 | #endif
|
---|
50 |
|
---|
51 |
|
---|
52 | /* Scaling decisions are generally the same as in the LL&M algorithm;
|
---|
53 | * see jidctint.c for more details. However, we choose to descale
|
---|
54 | * (right shift) multiplication products as soon as they are formed,
|
---|
55 | * rather than carrying additional fractional bits into subsequent additions.
|
---|
56 | * This compromises accuracy slightly, but it lets us save a few shifts.
|
---|
57 | * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
---|
58 | * everywhere except in the multiplications proper; this saves a good deal
|
---|
59 | * of work on 16-bit-int machines.
|
---|
60 | *
|
---|
61 | * The dequantized coefficients are not integers because the AA&N scaling
|
---|
62 | * factors have been incorporated. We represent them scaled up by PASS1_BITS,
|
---|
63 | * so that the first and second IDCT rounds have the same input scaling.
|
---|
64 | * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
|
---|
65 | * avoid a descaling shift; this compromises accuracy rather drastically
|
---|
66 | * for small quantization table entries, but it saves a lot of shifts.
|
---|
67 | * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
|
---|
68 | * so we use a much larger scaling factor to preserve accuracy.
|
---|
69 | *
|
---|
70 | * A final compromise is to represent the multiplicative constants to only
|
---|
71 | * 8 fractional bits, rather than 13. This saves some shifting work on some
|
---|
72 | * machines, and may also reduce the cost of multiplication (since there
|
---|
73 | * are fewer one-bits in the constants).
|
---|
74 | */
|
---|
75 |
|
---|
76 | #if BITS_IN_JSAMPLE == 8
|
---|
77 | #define CONST_BITS 8
|
---|
78 | #define PASS1_BITS 2
|
---|
79 | #else
|
---|
80 | #define CONST_BITS 8
|
---|
81 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
---|
82 | #endif
|
---|
83 |
|
---|
84 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
---|
85 | * causing a lot of useless floating-point operations at run time.
|
---|
86 | * To get around this we use the following pre-calculated constants.
|
---|
87 | * If you change CONST_BITS you may want to add appropriate values.
|
---|
88 | * (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
---|
89 | */
|
---|
90 |
|
---|
91 | #if CONST_BITS == 8
|
---|
92 | #define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
|
---|
93 | #define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
|
---|
94 | #define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
|
---|
95 | #define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
|
---|
96 | #else
|
---|
97 | #define FIX_1_082392200 FIX(1.082392200)
|
---|
98 | #define FIX_1_414213562 FIX(1.414213562)
|
---|
99 | #define FIX_1_847759065 FIX(1.847759065)
|
---|
100 | #define FIX_2_613125930 FIX(2.613125930)
|
---|
101 | #endif
|
---|
102 |
|
---|
103 |
|
---|
104 | /* We can gain a little more speed, with a further compromise in accuracy,
|
---|
105 | * by omitting the addition in a descaling shift. This yields an incorrectly
|
---|
106 | * rounded result half the time...
|
---|
107 | */
|
---|
108 |
|
---|
109 | #ifndef USE_ACCURATE_ROUNDING
|
---|
110 | #undef DESCALE
|
---|
111 | #define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
---|
112 | #endif
|
---|
113 |
|
---|
114 |
|
---|
115 | /* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
---|
116 | * descale to yield a DCTELEM result.
|
---|
117 | */
|
---|
118 |
|
---|
119 | #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
---|
120 |
|
---|
121 |
|
---|
122 | /* Dequantize a coefficient by multiplying it by the multiplier-table
|
---|
123 | * entry; produce a DCTELEM result. For 8-bit data a 16x16->16
|
---|
124 | * multiplication will do. For 12-bit data, the multiplier table is
|
---|
125 | * declared INT32, so a 32-bit multiply will be used.
|
---|
126 | */
|
---|
127 |
|
---|
128 | #if BITS_IN_JSAMPLE == 8
|
---|
129 | #define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
|
---|
130 | #else
|
---|
131 | #define DEQUANTIZE(coef,quantval) \
|
---|
132 | DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
|
---|
133 | #endif
|
---|
134 |
|
---|
135 |
|
---|
136 | /* Like DESCALE, but applies to a DCTELEM and produces an int.
|
---|
137 | * We assume that int right shift is unsigned if INT32 right shift is.
|
---|
138 | */
|
---|
139 |
|
---|
140 | #ifdef RIGHT_SHIFT_IS_UNSIGNED
|
---|
141 | #define ISHIFT_TEMPS DCTELEM ishift_temp;
|
---|
142 | #if BITS_IN_JSAMPLE == 8
|
---|
143 | #define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
|
---|
144 | #else
|
---|
145 | #define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
|
---|
146 | #endif
|
---|
147 | #define IRIGHT_SHIFT(x,shft) \
|
---|
148 | ((ishift_temp = (x)) < 0 ? \
|
---|
149 | (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
|
---|
150 | (ishift_temp >> (shft)))
|
---|
151 | #else
|
---|
152 | #define ISHIFT_TEMPS
|
---|
153 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
---|
154 | #endif
|
---|
155 |
|
---|
156 | #ifdef USE_ACCURATE_ROUNDING
|
---|
157 | #define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
|
---|
158 | #else
|
---|
159 | #define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
|
---|
160 | #endif
|
---|
161 |
|
---|
162 |
|
---|
163 | /*
|
---|
164 | * Perform dequantization and inverse DCT on one block of coefficients.
|
---|
165 | */
|
---|
166 |
|
---|
167 | GLOBAL(void)
|
---|
168 | jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
---|
169 | JCOEFPTR coef_block,
|
---|
170 | JSAMPARRAY output_buf, JDIMENSION output_col)
|
---|
171 | {
|
---|
172 | DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
---|
173 | DCTELEM tmp10, tmp11, tmp12, tmp13;
|
---|
174 | DCTELEM z5, z10, z11, z12, z13;
|
---|
175 | JCOEFPTR inptr;
|
---|
176 | IFAST_MULT_TYPE * quantptr;
|
---|
177 | int * wsptr;
|
---|
178 | JSAMPROW outptr;
|
---|
179 | JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
---|
180 | int ctr;
|
---|
181 | int workspace[DCTSIZE2]; /* buffers data between passes */
|
---|
182 | SHIFT_TEMPS /* for DESCALE */
|
---|
183 | ISHIFT_TEMPS /* for IDESCALE */
|
---|
184 |
|
---|
185 | /* Pass 1: process columns from input, store into work array. */
|
---|
186 |
|
---|
187 | inptr = coef_block;
|
---|
188 | quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
|
---|
189 | wsptr = workspace;
|
---|
190 | for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
---|
191 | /* Due to quantization, we will usually find that many of the input
|
---|
192 | * coefficients are zero, especially the AC terms. We can exploit this
|
---|
193 | * by short-circuiting the IDCT calculation for any column in which all
|
---|
194 | * the AC terms are zero. In that case each output is equal to the
|
---|
195 | * DC coefficient (with scale factor as needed).
|
---|
196 | * With typical images and quantization tables, half or more of the
|
---|
197 | * column DCT calculations can be simplified this way.
|
---|
198 | */
|
---|
199 |
|
---|
200 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
---|
201 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
---|
202 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
---|
203 | inptr[DCTSIZE*7] == 0) {
|
---|
204 | /* AC terms all zero */
|
---|
205 | int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
---|
206 |
|
---|
207 | wsptr[DCTSIZE*0] = dcval;
|
---|
208 | wsptr[DCTSIZE*1] = dcval;
|
---|
209 | wsptr[DCTSIZE*2] = dcval;
|
---|
210 | wsptr[DCTSIZE*3] = dcval;
|
---|
211 | wsptr[DCTSIZE*4] = dcval;
|
---|
212 | wsptr[DCTSIZE*5] = dcval;
|
---|
213 | wsptr[DCTSIZE*6] = dcval;
|
---|
214 | wsptr[DCTSIZE*7] = dcval;
|
---|
215 |
|
---|
216 | inptr++; /* advance pointers to next column */
|
---|
217 | quantptr++;
|
---|
218 | wsptr++;
|
---|
219 | continue;
|
---|
220 | }
|
---|
221 |
|
---|
222 | /* Even part */
|
---|
223 |
|
---|
224 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
---|
225 | tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
---|
226 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
---|
227 | tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
---|
228 |
|
---|
229 | tmp10 = tmp0 + tmp2; /* phase 3 */
|
---|
230 | tmp11 = tmp0 - tmp2;
|
---|
|
---|