1 | /*
|
---|
2 | * jfdctflt.c
|
---|
3 | *
|
---|
4 | * Copyright (C) 1994-1996, Thomas G. Lane.
|
---|
5 | * This file is part of the Independent JPEG Group's software.
|
---|
6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
7 | *
|
---|
8 | * This file contains a floating-point implementation of the
|
---|
9 | * forward DCT (Discrete Cosine Transform).
|
---|
10 | *
|
---|
11 | * This implementation should be more accurate than either of the integer
|
---|
12 | * DCT implementations. However, it may not give the same results on all
|
---|
13 | * machines because of differences in roundoff behavior. Speed will depend
|
---|
14 | * on the hardware's floating point capacity.
|
---|
15 | *
|
---|
16 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
---|
17 | * on each column. Direct algorithms are also available, but they are
|
---|
18 | * much more complex and seem not to be any faster when reduced to code.
|
---|
19 | *
|
---|
20 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
---|
21 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
---|
22 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
---|
23 | * JPEG textbook (see REFERENCES section in file README). The following code
|
---|
24 | * is based directly on figure 4-8 in P&M.
|
---|
25 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
---|
26 | * possible to arrange the computation so that many of the multiplies are
|
---|
27 | * simple scalings of the final outputs. These multiplies can then be
|
---|
28 | * folded into the multiplications or divisions by the JPEG quantization
|
---|
29 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
---|
30 | * to be done in the DCT itself.
|
---|
31 | * The primary disadvantage of this method is that with a fixed-point
|
---|
32 | * implementation, accuracy is lost due to imprecise representation of the
|
---|
33 | * scaled quantization values. However, that problem does not arise if
|
---|
34 | * we use floating point arithmetic.
|
---|
35 | */
|
---|
36 |
|
---|
37 | #define JPEG_INTERNALS
|
---|
38 | #include "jinclude.h"
|
---|
39 | #include "jpeglib.h"
|
---|
40 | #include "jdct.h" /* Private declarations for DCT subsystem */
|
---|
41 |
|
---|
42 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
43 |
|
---|
44 |
|
---|
45 | /*
|
---|
46 | * This module is specialized to the case DCTSIZE = 8.
|
---|
47 | */
|
---|
48 |
|
---|
49 | #if DCTSIZE != 8
|
---|
50 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
---|
51 | #endif
|
---|
52 |
|
---|
53 |
|
---|
54 | /*
|
---|
55 | * Perform the forward DCT on one block of samples.
|
---|
56 | */
|
---|
57 |
|
---|
58 | GLOBAL(void)
|
---|
59 | jpeg_fdct_float (FAST_FLOAT * data)
|
---|
60 | {
|
---|
61 | FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
---|
62 | FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
---|
63 | FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
|
---|
64 | FAST_FLOAT *dataptr;
|
---|
65 | int ctr;
|
---|
66 |
|
---|
67 | /* Pass 1: process rows. */
|
---|
68 |
|
---|
69 | dataptr = data;
|
---|
70 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
---|
71 | tmp0 = dataptr[0] + dataptr[7];
|
---|
72 | tmp7 = dataptr[0] - dataptr[7];
|
---|
73 | tmp1 = dataptr[1] + dataptr[6];
|
---|
74 | tmp6 = dataptr[1] - dataptr[6];
|
---|
75 | tmp2 = dataptr[2] + dataptr[5];
|
---|
76 | tmp5 = dataptr[2] - dataptr[5];
|
---|
77 | tmp3 = dataptr[3] + dataptr[4];
|
---|
78 | tmp4 = dataptr[3] - dataptr[4];
|
---|
79 |
|
---|
80 | /* Even part */
|
---|
81 |
|
---|
82 | tmp10 = tmp0 + tmp3; /* phase 2 */
|
---|
83 | tmp13 = tmp0 - tmp3;
|
---|
84 | tmp11 = tmp1 + tmp2;
|
---|
85 | tmp12 = tmp1 - tmp2;
|
---|
86 |
|
---|
87 | dataptr[0] = tmp10 + tmp11; /* phase 3 */
|
---|
|
---|