1 | (*****************************************************************************
|
---|
2 |
|
---|
3 | DIGITAL SIGNAL PROCESSING TOOLS
|
---|
4 | Version 1.03, 2001/06/15
|
---|
5 | (c) 1999 - Laurent de Soras
|
---|
6 |
|
---|
7 | FFTReal.h
|
---|
8 | Fourier transformation of real number arrays.
|
---|
9 | Portable ISO C++
|
---|
10 |
|
---|
11 | ------------------------------------------------------------------------------
|
---|
12 |
|
---|
13 | LEGAL
|
---|
14 |
|
---|
15 | Source code may be freely used for any purpose, including commercial
|
---|
16 | applications. Programs must display in their "About" dialog-box (or
|
---|
17 | documentation) a text telling they use these routines by Laurent de Soras.
|
---|
18 | Modified source code can be distributed, but modifications must be clearly
|
---|
19 | indicated.
|
---|
20 |
|
---|
21 | CONTACT
|
---|
22 |
|
---|
23 | Laurent de Soras
|
---|
24 | 92 avenue Albert 1er
|
---|
25 | 92500 Rueil-Malmaison
|
---|
26 | France
|
---|
27 |
|
---|
28 | [email protected]
|
---|
29 |
|
---|
30 | ------------------------------------------------------------------------------
|
---|
31 |
|
---|
32 | Translation to ObjectPascal by :
|
---|
33 | Frederic Vanmol
|
---|
34 | [email protected]
|
---|
35 |
|
---|
36 | *****************************************************************************)
|
---|
37 |
|
---|
38 |
|
---|
39 | unit
|
---|
40 | FFTReal;
|
---|
41 |
|
---|
42 | interface
|
---|
43 |
|
---|
44 | uses
|
---|
45 | Windows;
|
---|
46 |
|
---|
47 | (* Change this typedef to use a different floating point type in your FFTs
|
---|
48 | (i.e. float, double or long double). *)
|
---|
49 | type
|
---|
50 | pflt_t = ^flt_t;
|
---|
51 | flt_t = single;
|
---|
52 |
|
---|
53 | pflt_array = ^flt_array;
|
---|
54 | flt_array = array[0..0] of flt_t;
|
---|
55 |
|
---|
56 | plongarray = ^longarray;
|
---|
57 | longarray = array[0..0] of longint;
|
---|
58 |
|
---|
59 | const
|
---|
60 | sizeof_flt : longint = SizeOf(flt_t);
|
---|
61 |
|
---|
62 |
|
---|
63 |
|
---|
64 | type
|
---|
65 | // Bit reversed look-up table nested class
|
---|
66 | TBitReversedLUT = class
|
---|
67 | private
|
---|
68 | _ptr : plongint;
|
---|
69 | public
|
---|
70 | constructor Create(const nbr_bits: integer);
|
---|
71 | destructor Destroy; override;
|
---|
72 | function get_ptr: plongint;
|
---|
73 | end;
|
---|
74 |
|
---|
75 | // Trigonometric look-up table nested class
|
---|
76 | TTrigoLUT = class
|
---|
77 | private
|
---|
78 | _ptr : pflt_t;
|
---|
79 | public
|
---|
80 | constructor Create(const nbr_bits: integer);
|
---|
81 | destructor Destroy; override;
|
---|
82 | function get_ptr(const level: integer): pflt_t;
|
---|
83 | end;
|
---|
84 |
|
---|
85 | TFFTReal = class
|
---|
86 | private
|
---|
87 | _bit_rev_lut : TBitReversedLUT;
|
---|
88 | _trigo_lut : TTrigoLUT;
|
---|
89 | _sqrt2_2 : flt_t;
|
---|
90 | _length : longint;
|
---|
91 | _nbr_bits : integer;
|
---|
92 | _buffer_ptr : pflt_t;
|
---|
93 | public
|
---|
94 | constructor Create(const length: longint);
|
---|
95 | destructor Destroy; override;
|
---|
96 |
|
---|
97 | procedure do_fft(f: pflt_array; const x: pflt_array);
|
---|
98 | procedure do_ifft(const f: pflt_array; x: pflt_array);
|
---|
99 | procedure rescale(x: pflt_array);
|
---|
100 | end;
|
---|
101 |
|
---|
102 |
|
---|
103 |
|
---|
104 |
|
---|
105 |
|
---|
106 |
|
---|
107 |
|
---|
108 | implementation
|
---|
109 |
|
---|
110 | uses
|
---|
111 | Math;
|
---|
112 |
|
---|
113 | { TBitReversedLUT }
|
---|
114 |
|
---|
115 | constructor TBitReversedLUT.Create(const nbr_bits: integer);
|
---|
116 | var
|
---|
117 | length : longint;
|
---|
118 | cnt : longint;
|
---|
119 | br_index : longint;
|
---|
120 | bit : longint;
|
---|
121 | begin
|
---|
122 | inherited Create;
|
---|
123 |
|
---|
124 | length := 1 shl nbr_bits;
|
---|
125 | GetMem(_ptr, length*SizeOf(longint));
|
---|
126 |
|
---|
127 | br_index := 0;
|
---|
128 | plongarray(_ptr)^[0] := 0;
|
---|
129 | for cnt := 1 to length-1 do
|
---|
130 | begin
|
---|
131 | // ++br_index (bit reversed)
|
---|
132 | bit := length shr 1;
|
---|
133 | br_index := br_index xor bit;
|
---|
134 | while br_index and bit = 0 do
|
---|
135 | begin
|
---|
136 | bit := bit shr 1;
|
---|
137 | br_index := br_index xor bit;
|
---|
138 | end;
|
---|
139 |
|
---|
140 | plongarray(_ptr)^[cnt] := br_index;
|
---|
141 | end;
|
---|
142 | end;
|
---|
143 |
|
---|
144 | destructor TBitReversedLUT.Destroy;
|
---|
145 | begin
|
---|
146 | FreeMem(_ptr);
|
---|
147 | _ptr := nil;
|
---|
148 | inherited;
|
---|
149 | end;
|
---|
150 |
|
---|
151 | function TBitReversedLUT.get_ptr: plongint;
|
---|
152 | begin
|
---|
153 | Result := _ptr;
|
---|
154 | end;
|
---|
155 |
|
---|
156 | { TTrigLUT }
|
---|
157 |
|
---|
158 | constructor TTrigoLUT.Create(const nbr_bits: integer);
|
---|
159 | var
|
---|
160 | total_len : longint;
|
---|
161 | PI : double;
|
---|
162 | level : integer;
|
---|
163 | level_len : longint;
|
---|
164 | level_ptr : pflt_array;
|
---|
165 | mul : double;
|
---|
166 | i : longint;
|
---|
167 | begin
|
---|
168 | inherited Create;
|
---|
169 |
|
---|
170 | _ptr := nil;
|
---|
171 |
|
---|
172 | if (nbr_bits > 3) then
|
---|
173 | begin
|
---|
174 | total_len := (1 shl (nbr_bits - 1)) - 4;
|
---|
175 | GetMem(_ptr, total_len * sizeof_flt);
|
---|
176 |
|
---|
177 | PI := ArcTan(1) * 4;
|
---|
178 | for level := 3 to nbr_bits-1 do
|
---|
179 | begin
|
---|
180 | level_len := 1 shl (level - 1);
|
---|
181 | level_ptr := pointer(get_ptr(level));
|
---|
182 | mul := PI / (level_len shl 1);
|
---|
183 |
|
---|
184 | for i := 0 to level_len-1 do
|
---|
185 | level_ptr^[i] := cos(i * mul);
|
---|
186 | end;
|
---|
187 | end;
|
---|
188 | end;
|
---|
189 |
|
---|
190 | destructor TTrigoLUT.Destroy;
|
---|
191 | begin
|
---|
192 | FreeMem(_ptr);
|
---|
193 | _ptr := nil;
|
---|
194 | inherited;
|
---|
195 | end;
|
---|
196 |
|
---|
197 | function TTrigoLUT.get_ptr(const level: integer): pflt_t;
|
---|
198 | var
|
---|
199 | tempp : pflt_t;
|
---|
200 | begin
|
---|
201 | tempp := _ptr;
|
---|
202 | inc(tempp, (1 shl (level-1)) - 4);
|
---|
203 | Result := tempp;
|
---|
204 | end;
|
---|
205 |
|
---|
206 | { TFFTReal }
|
---|
207 |
|
---|
208 | constructor TFFTReal.Create(const length: longint);
|
---|
209 | begin
|
---|
210 | inherited Create;
|
---|
211 |
|
---|
212 | _length := length;
|
---|
213 | _nbr_bits := Floor(Ln(length) / Ln(2) + 0.5);
|
---|
214 | _bit_rev_lut := TBitReversedLUT.Create(Floor(Ln(length) / Ln(2) + 0.5));
|
---|
215 | _trigo_lut := TTrigoLUT.Create(Floor(Ln(length) / Ln(2) + 0.05));
|
---|
216 | _sqrt2_2 := Sqrt(2) * 0.5;
|
---|
217 |
|
---|
218 | _buffer_ptr := nil;
|
---|
219 | if _nbr_bits > 2 then
|
---|
220 | GetMem(_buffer_ptr, _length * sizeof_flt);
|
---|
221 | end;
|
---|
222 |
|
---|
223 | destructor TFFTReal.Destroy;
|
---|
224 | begin
|
---|
225 | if _buffer_ptr <> nil then
|
---|
226 | begin
|
---|
227 | FreeMem(_buffer_ptr);
|
---|
228 | _buffer_ptr := nil;
|
---|
229 | end;
|
---|
230 |
|
---|
231 | _bit_rev_lut.Free;
|
---|
232 | _bit_rev_lut := nil;
|
---|
233 | _trigo_lut.Free;
|
---|
234 | _trigo_lut := nil;
|
---|
235 |
|
---|
236 | inherited;
|
---|
237 | end;
|
---|
238 |
|
---|
239 | (*==========================================================================*/
|
---|
240 | /* Name: do_fft */
|
---|
241 | /* Description: Compute the FFT of the array. */
|
---|
242 | /* Input parameters: */
|
---|
243 | /* - x: pointer on the source array (time). */
|
---|
244 | /* Output parameters: */
|
---|
245 | /* - f: pointer on the destination array (frequencies). */
|
---|
246 | /* f [0...length(x)/2] = real values, */
|
---|
247 | /* f [length(x)/2+1...length(x)-1] = imaginary values of */
|
---|
248 | /* coefficents 1...length(x)/2-1. */
|
---|
249 | /*==========================================================================*)
|
---|
250 | procedure TFFTReal.do_fft(f: pflt_array; const x: pflt_array);
|
---|
251 | var
|
---|
252 | sf, df : pflt_array;
|
---|
253 | pass : integer;
|
---|
254 | nbr_coef : longint;
|
---|
255 | h_nbr_coef : longint;
|
---|
256 | d_nbr_coef : longint;
|
---|
257 | coef_index : longint;
|
---|
258 | bit_rev_lut_ptr : plongarray;
|
---|
259 | rev_index_0 : longint;
|
---|
260 | rev_index_1 : longint;
|
---|
261 | rev_index_2 : longint;
|
---|
262 | rev_index_3 : longint;
|
---|
263 | df2 : pflt_array;
|
---|
264 | n1, n2, n3 : integer;
|
---|
265 | sf_0, sf_2 : flt_t;
|
---|
266 | sqrt2_2 : flt_t;
|
---|
267 | v : flt_t;
|
---|
268 | cos_ptr : pflt_array;
|
---|
269 | i : longint;
|
---|
270 | sf1r, sf2r : pflt_array;
|
---|
271 | dfr, dfi : pflt_array;
|
---|
272 | sf1i, sf2i : pflt_array;
|
---|
273 | c, s : flt_t;
|
---|
274 | temp_ptr : pflt_array;
|
---|
275 | b_0, b_2 : flt_t;
|
---|
276 | begin
|
---|
277 | n1 := 1;
|
---|
278 | n2 := 2;
|
---|
279 | n3 := 3;
|
---|
280 |
|
---|
281 | (*______________________________________________
|
---|
282 | *
|
---|
283 | * General case
|
---|
284 | *______________________________________________
|
---|
285 | *)
|
---|
286 |
|
---|
287 | if _nbr_bits > 2 then
|
---|
288 | begin
|
---|
289 | if _nbr_bits and 1 <> 0 then
|
---|
290 | begin
|
---|
291 | df := pointer(_buffer_ptr);
|
---|
292 | sf := f;
|
---|
293 | end
|
---|
294 | else
|
---|
295 | begin
|
---|
296 | df := f;
|
---|
297 | sf := pointer(_buffer_ptr);
|
---|
298 | end;
|
---|
299 |
|
---|
300 | //
|
---|
301 | // Do the transformation in several passes
|
---|
302 | //
|
---|
303 |
|
---|
304 | // First and second pass at once
|
---|
305 | bit_rev_lut_ptr := pointer(_bit_rev_lut.get_ptr);
|
---|
306 | coef_index := 0;
|
---|
307 |
|
---|
308 | repeat
|
---|
309 | rev_index_0 := bit_rev_lut_ptr^[coef_index];
|
---|
310 | rev_index_1 := bit_rev_lut_ptr^[coef_index + 1];
|
---|
311 | rev_index_2 := bit_rev_lut_ptr^[coef_index + 2];
|
---|
312 | rev_index_3 := bit_rev_lut_ptr^[coef_index + 3];
|
---|
313 |
|
---|
314 | df2 := pointer(longint(df) + (coef_index*sizeof_flt));
|
---|
315 | df2^[n1] := x^[rev_index_0] - x^[rev_index_1];
|
---|
316 | df2^[n3] := x^[rev_index_2] - x^[rev_index_3];
|
---|
317 |
|
---|
318 | sf_0 := x^[rev_index_0] + x^[rev_index_1];
|
---|
319 | sf_2 := x^[rev_index_2] + x^[rev_index_3];
|
---|
320 |
|
---|
321 | df2^[0] := sf_0 + sf_2;
|
---|
322 | df2^[n2] := sf_0 - sf_2;
|
---|
323 |
|
---|
324 | inc(coef_index, 4);
|
---|
325 | until (coef_index >= _length);
|
---|
326 |
|
---|
327 |
|
---|
328 | // Third pass
|
---|
329 | coef_index := 0;
|
---|
330 | sqrt2_2 := _sqrt2_2;
|
---|
331 |
|
---|
332 | repeat
|
---|
333 | sf^[coef_index] := df^[coef_index] + df^[coef_index + 4];
|
---|
334 | sf^[coef_index + 4] := df^[coef_index] - df^[coef_index + 4];
|
---|
335 | sf^[coef_index + 2] := df^[coef_index + 2];
|
---|
336 | sf^[coef_index + 6] := df^[coef_index + 6];
|
---|
337 |
|
---|
338 | v := (df [coef_index + 5] - df^[coef_index + 7]) * sqrt2_2;
|
---|
339 | sf^[coef_index + 1] := df^[coef_index + 1] + v;
|
---|
340 | sf^[coef_index + 3] := df^[coef_index + 1] - v;
|
---|
341 |
|
---|
342 | v := (df^[coef_index + 5] + df^[coef_index + 7]) * sqrt2_2;
|
---|
343 | sf [coef_index + 5] := v + df^[coef_index + 3];
|
---|
344 | sf [coef_index + 7] := v - df^[coef_index + 3];
|
---|
345 |
|
---|
346 | inc(coef_index, 8);
|
---|
347 | until (coef_index >= _length);
|
---|
348 |
|
---|
349 |
|
---|
350 | // Next pass
|
---|
351 | for pass := 3 to _nbr_bits-1 do
|
---|
352 | begin
|
---|
353 | coef_index := 0;
|
---|
354 | nbr_coef := 1 shl pass;
|
---|
355 | h_nbr_coef := nbr_coef shr 1;
|
---|
356 | d_nbr_coef := nbr_coef shl 1;
|
---|
357 |
|
---|
358 | cos_ptr := pointer(_trigo_lut.get_ptr(pass));
|
---|
359 | repeat
|
---|
360 | sf1r := pointer(longint(sf) + (coef_index * sizeof_flt));
|
---|
361 | sf2r := pointer(longint(sf1r) + (nbr_coef * sizeof_flt));
|
---|
362 | dfr := pointer(longint(df) + (coef_index * sizeof_flt));
|
---|
363 | dfi := pointer(longint(dfr) + (nbr_coef * sizeof_flt));
|
---|
364 |
|
---|
365 | // Extreme coefficients are always real
|
---|
366 | dfr^[0] := sf1r^[0] + sf2r^[0];
|
---|
367 | dfi^[0] := sf1r^[0] - sf2r^[0]; // dfr [nbr_coef] =
|
---|
368 | dfr^[h_nbr_coef] := sf1r^[h_nbr_coef];
|
---|
369 | dfi^[h_nbr_coef] := sf2r^[h_nbr_coef];
|
---|
370 |
|
---|
371 | // Others are conjugate complex numbers
|
---|
372 | sf1i := pointer(longint(sf1r) + (h_nbr_coef * sizeof_flt));
|
---|
373 | sf2i := pointer(longint(sf1i) + (nbr_coef * sizeof_flt));
|
---|
374 |
|
---|
375 | for i := 1 to h_nbr_coef-1 do
|
---|
376 | begin
|
---|
377 | c := cos_ptr^[i]; // cos (i*PI/nbr_coef);
|
---|
378 | s := cos_ptr^[h_nbr_coef - i]; // sin (i*PI/nbr_coef);
|
---|
379 |
|
---|
380 | v := sf2r^[i] * c - sf2i^[i] * s;
|
---|
381 | dfr^[i] := sf1r^[i] + v;
|
---|
382 | dfi^[-i] := sf1r^[i] - v; // dfr [nbr_coef - i] =
|
---|
383 |
|
---|
384 | v := sf2r^[i] * s + sf2i^[i] * c;
|
---|
385 | dfi^[i] := v + sf1i^[i];
|
---|
386 | dfi^[nbr_coef - i] := v - sf1i^[i];
|
---|
387 | end;
|
---|
388 |
|
---|
389 | inc(coef_index, d_nbr_coef);
|
---|
390 | until (coef_index >= _length);
|
---|
391 |
|
---|
392 | // Prepare to the next pass
|
---|
393 | temp_ptr := df;
|
---|
394 | df := sf;
|
---|
395 | sf := temp_ptr;
|
---|
396 | end;
|
---|
397 | end
|
---|
398 |
|
---|
399 | (*______________________________________________
|
---|
400 | *
|
---|
401 | * Special cases
|
---|
402 | *______________________________________________
|
---|
403 | *)
|
---|
404 |
|
---|
405 | // 4-point FFT
|
---|
406 | else if _nbr_bits = 2 then
|
---|
407 | begin
|
---|
408 | f^[n1] := x^[0] - x^[n2];
|
---|
409 | f^[n3] := x^[n1] - x^[n3];
|
---|
410 |
|
---|
411 | b_0 := x^[0] + x^[n2];
|
---|
412 | b_2 := x^[n1] + x^[n3];
|
---|
413 |
|
---|
414 | f^[0] := b_0 + b_2;
|
---|
415 | f^[n2] := b_0 - b_2;
|
---|
416 | end
|
---|
417 |
|
---|
418 | // 2-point FFT
|
---|
419 | else if _nbr_bits = 1 then
|
---|
420 | begin
|
---|
421 | f^[0] := x^[0] + x^[n1];
|
---|
422 | f^[n1] := x^[0] - x^[n1];
|
---|
423 | end
|
---|
424 |
|
---|
425 | // 1-point FFT
|
---|
426 | else
|
---|
427 | f^[0] := x^[0];
|
---|
428 | end;
|
---|
429 |
|
---|
430 |
|
---|
431 | (*==========================================================================*/
|
---|
432 | /* Name: do_ifft */
|
---|
433 | /* Description: Compute the inverse FFT of the array. Notice that */
|
---|
434 | /* IFFT (FFT (x)) = x * length (x). Data must be */
|
---|
435 | /* post-scaled. */
|
---|
436 | /* Input parameters: */
|
---|
437 | /* - f: pointer on the source array (frequencies). */
|
---|
438 | /* f [0...length(x)/2] = real values, */
|
---|
439 | /* f [length(x)/2+1...length(x)-1] = imaginary values of */
|
---|
440 | /* coefficents 1...length(x)/2-1. */
|
---|
441 | /* Output parameters: */
|
---|
442 | /* - x: pointer on the destination array (time). */
|
---|
443 | /*==========================================================================*)
|
---|
444 | procedure TFFTReal.do_ifft(const f: pflt_array; x: pflt_array);
|
---|
445 | var
|
---|
446 | n1, n2, n3 : integer;
|
---|
447 | n4, n5, n6, n7 : integer;
|
---|
448 | sf, df, df_temp : pflt_array;
|
---|
449 | pass : integer;
|
---|
450 | nbr_coef : longint;
|
---|
451 | h_nbr_coef : longint;
|
---|
452 | d_nbr_coef : longint;
|
---|
453 | coef_index : longint;
|
---|
454 | cos_ptr : pflt_array;
|
---|
455 | i : longint;
|
---|
456 | sfr, sfi : pflt_array;
|
---|
457 | df1r, df2r : pflt_array;
|
---|
458 | df1i, df2i : pflt_array;
|
---|
459 | c, s, vr, vi : flt_t;
|
---|
460 | temp_ptr : pflt_array;
|
---|
461 | sqrt2_2 : flt_t;
|
---|
462 | bit_rev_lut_ptr : plongarray;
|
---|
463 | sf2 : pflt_array;
|
---|
464 | b_0, b_1, b_2, b_3 : flt_t;
|
---|
465 | begin
|
---|
466 | n1 := 1;
|
---|
467 | n2 := 2;
|
---|
468 | n3 := 3;
|
---|
469 | n4 := 4;
|
---|
470 | n5 := 5;
|
---|
471 | n6 := 6;
|
---|
472 | n7 := 7;
|
---|
473 |
|
---|
474 | (*______________________________________________
|
---|
475 | *
|
---|
476 | * General case
|
---|
477 | *______________________________________________
|
---|
478 | *)
|
---|
479 |
|
---|
480 | if _nbr_bits > 2 then
|
---|
481 | begin
|
---|
482 | sf := f;
|
---|
483 |
|
---|
484 | if _nbr_bits and 1 <> 0 then
|
---|
485 | begin
|
---|
486 | df := pointer(_buffer_ptr);
|
---|
487 | df_temp := x;
|
---|
488 | end
|
---|
489 | else
|
---|
490 | begin
|
---|
491 | df := x;
|
---|
492 | df_temp := pointer(_buffer_ptr);
|
---|
493 | end;
|
---|
494 |
|
---|
495 | // Do the transformation in several pass
|
---|
496 |
|
---|
497 | // First pass
|
---|
498 | for pass := _nbr_bits-1 downto 3 do
|
---|
499 | begin
|
---|
500 | coef_index := 0;
|
---|
501 | nbr_coef := 1 shl pass;
|
---|
502 | h_nbr_coef := nbr_coef shr 1;
|
---|
503 | d_nbr_coef := nbr_coef shl 1;
|
---|
504 |
|
---|
505 | cos_ptr := pointer(_trigo_lut.get_ptr(pass));
|
---|
506 |
|
---|
507 | repeat
|
---|
508 | sfr := pointer(longint(sf) + (coef_index*sizeof_flt));
|
---|
509 | sfi := pointer(longint(sfr) + (nbr_coef*sizeof_flt));
|
---|
510 | df1r := pointer(longint(df) + (coef_index*sizeof_flt));
|
---|
511 | df2r := pointer(longint(df1r) + (nbr_coef*sizeof_flt));
|
---|
512 |
|
---|
513 | // Extreme coefficients are always real
|
---|
514 | df1r^[0] := sfr^[0] + sfi^[0]; // + sfr [nbr_coef]
|
---|
515 | df2r^[0] := sfr^[0] - sfi^[0]; // - sfr [nbr_coef]
|
---|
516 | df1r^[h_nbr_coef] := sfr^[h_nbr_coef] * 2;
|
---|
517 | df2r^[h_nbr_coef] := sfi^[h_nbr_coef] * 2;
|
---|
518 |
|
---|
519 | // Others are conjugate complex numbers
|
---|
520 | df1i := pointer(longint(df1r) + (h_nbr_coef*sizeof_flt));
|
---|
521 | df2i := pointer(longint(df1i) + (nbr_coef*sizeof_flt));
|
---|
522 |
|
---|
523 | for i := 1 to h_nbr_coef-1 do
|
---|
524 | begin
|
---|
525 | df1r^[i] := sfr^[i] + sfi^[-i]; // + sfr [nbr_coef - i]
|
---|
526 | df1i^[i] := sfi^[i] - sfi^[nbr_coef - i];
|
---|
527 |
|
---|
528 | c := cos_ptr^[i]; // cos (i*PI/nbr_coef);
|
---|
529 | s := cos_ptr^[h_nbr_coef - i]; // sin (i*PI/nbr_coef);
|
---|
530 | vr := sfr^[i] - sfi^[-i]; // - sfr [nbr_coef - i]
|
---|
531 | vi := sfi^[i] + sfi^[nbr_coef - i];
|
---|
532 |
|
---|
533 | df2r^[i] := vr * c + vi * s;
|
---|
534 | df2i^[i] := vi * c - vr * s;
|
---|
535 | end;
|
---|
536 |
|
---|
537 | inc(coef_index, d_nbr_coef);
|
---|
538 | until (coef_index >= _length);
|
---|
539 |
|
---|
540 |
|
---|
541 | // Prepare to the next pass
|
---|
542 | if (pass < _nbr_bits - 1) then
|
---|
543 | begin
|
---|
544 | temp_ptr := df;
|
---|
545 | df := sf;
|
---|
546 | sf := temp_ptr;
|
---|
547 | end
|
---|
548 | else
|
---|
549 | begin
|
---|
550 | sf := df;
|
---|
551 | df := df_temp;
|
---|
552 | end
|
---|
553 | end;
|
---|
554 |
|
---|
555 | // Antepenultimate pass
|
---|
556 | sqrt2_2 := _sqrt2_2;
|
---|
557 | coef_index := 0;
|
---|
558 |
|
---|
559 | repeat
|
---|
560 | df^[coef_index] := sf^[coef_index] + sf^[coef_index + 4];
|
---|
561 | df^[coef_index + 4] := sf^[coef_index] - sf^[coef_index + 4];
|
---|
562 | df^[coef_index + 2] := sf^[coef_index + 2] * 2;
|
---|
563 | df^[coef_index + 6] := sf^[coef_index + 6] * 2;
|
---|
564 |
|
---|
565 | df^[coef_index + 1] := sf^[coef_index + 1] + sf^[coef_index + 3];
|
---|
566 | df^[coef_index + 3] := sf^[coef_index + 5] - sf^[coef_index + 7];
|
---|
567 |
|
---|
568 | vr := sf^[coef_index + 1] - sf^[coef_index + 3];
|
---|
569 | vi := sf^[coef_index + 5] + sf^[coef_index + 7];
|
---|
570 |
|
---|
571 | df^[coef_index + 5] := (vr + vi) * sqrt2_2;
|
---|
572 | df^[coef_index + 7] := (vi - vr) * sqrt2_2;
|
---|
573 |
|
---|
574 | inc(coef_index, 8);
|
---|
575 | until (coef_index >= _length);
|
---|
576 |
|
---|
577 |
|
---|
578 | // Penultimate and last pass at once
|
---|
579 | coef_index := 0;
|
---|
580 | bit_rev_lut_ptr := pointer(_bit_rev_lut.get_ptr);
|
---|
581 | sf2 := df;
|
---|
582 |
|
---|
583 | repeat
|
---|
584 | b_0 := sf2^[0] + sf2^[n2];
|
---|
585 | b_2 := sf2^[0] - sf2^[n2];
|
---|
586 | b_1 := sf2^[n1] * 2;
|
---|
587 | b_3 := sf2^[n3] * 2;
|
---|
588 |
|
---|
589 | x^[bit_rev_lut_ptr^[0]] := b_0 + b_1;
|
---|
590 | x^[bit_rev_lut_ptr^[n1]] := b_0 - b_1;
|
---|
591 | x^[bit_rev_lut_ptr^[n2]] := b_2 + b_3;
|
---|
592 | x^[bit_rev_lut_ptr^[n3]] := b_2 - b_3;
|
---|
593 |
|
---|
594 | b_0 := sf2^[n4] + sf2^[n6];
|
---|
595 | b_2 := sf2^[n4] - sf2^[n6];
|
---|
596 | b_1 := sf2^[n5] * 2;
|
---|
597 | b_3 := sf2^[n7] * 2;
|
---|
598 |
|
---|
599 | x^[bit_rev_lut_ptr^[n4]] := b_0 + b_1;
|
---|
600 | x^[bit_rev_lut_ptr^[n5]] := b_0 - b_1;
|
---|
601 | x^[bit_rev_lut_ptr^[n6]] := b_2 + b_3;
|
---|
602 | x^[bit_rev_lut_ptr^[n7]] := b_2 - b_3;
|
---|
603 |
|
---|
604 | inc(sf2, 8);
|
---|
605 | inc(coef_index, 8);
|
---|
606 | inc(bit_rev_lut_ptr, 8);
|
---|
607 | until (coef_index >= _length);
|
---|
608 | end
|
---|
609 |
|
---|
610 | (*______________________________________________
|
---|
611 | *
|
---|
612 | * Special cases
|
---|
613 | *______________________________________________
|
---|
614 | *)
|
---|
615 |
|
---|
616 | // 4-point IFFT
|
---|
617 | else if _nbr_bits = 2 then
|
---|
618 | begin
|
---|
619 | b_0 := f^[0] + f [n2];
|
---|
620 | b_2 := f^[0] - f [n2];
|
---|
621 |
|
---|
622 | x^[0] := b_0 + f [n1] * 2;
|
---|
623 | x^[n2] := b_0 - f [n1] * 2;
|
---|
624 | x^[n1] := b_2 + f [n3] * 2;
|
---|
625 | x^[n3] := b_2 - f [n3] * 2;
|
---|
626 | end
|
---|
627 |
|
---|
628 | // 2-point IFFT
|
---|
629 | else if _nbr_bits = 1 then
|
---|
630 | begin
|
---|
631 | x^[0] := f^[0] + f^[n1];
|
---|
632 | x^[n1] := f^[0] - f^[n1];
|
---|
633 | end
|
---|
634 |
|
---|
635 | // 1-point IFFT
|
---|
636 | else
|
---|
637 | x^[0] := f^[0];
|
---|
638 | end;
|
---|
639 |
|
---|
640 | (*==========================================================================*/
|
---|
641 | /* Name: rescale */
|
---|
642 | /* Description: Scale an array by divide each element by its length. */
|
---|
643 | /* This function should be called after FFT + IFFT. */
|
---|
644 | /* Input/Output parameters: */
|
---|
645 | /* - x: pointer on array to rescale (time or frequency). */
|
---|
646 | /*==========================================================================*)
|
---|
647 | procedure TFFTReal.rescale(x: pflt_array);
|
---|
648 | var
|
---|
649 | mul : flt_t;
|
---|
650 | i : longint;
|
---|
651 | begin
|
---|
652 | mul := 1.0 / _length;
|
---|
653 | i := _length - 1;
|
---|
654 |
|
---|
655 | repeat
|
---|
656 | x^[i] := x^[i] * mul;
|
---|
657 | dec(i);
|
---|
658 | until (i < 0);
|
---|
659 | end;
|
---|
660 |
|
---|
661 | end.
|
---|