1 | /****************************************************************************
|
---|
2 | **
|
---|
3 | ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
|
---|
4 | ** Contact: Qt Software Information ([email protected])
|
---|
5 | **
|
---|
6 | ** This file is part of the demonstration applications of the Qt Toolkit.
|
---|
7 | **
|
---|
8 | ** $QT_BEGIN_LICENSE:LGPL$
|
---|
9 | ** Commercial Usage
|
---|
10 | ** Licensees holding valid Qt Commercial licenses may use this file in
|
---|
11 | ** accordance with the Qt Commercial License Agreement provided with the
|
---|
12 | ** Software or, alternatively, in accordance with the terms contained in
|
---|
13 | ** a written agreement between you and Nokia.
|
---|
14 | **
|
---|
15 | ** GNU Lesser General Public License Usage
|
---|
16 | ** Alternatively, this file may be used under the terms of the GNU Lesser
|
---|
17 | ** General Public License version 2.1 as published by the Free Software
|
---|
18 | ** Foundation and appearing in the file LICENSE.LGPL included in the
|
---|
19 | ** packaging of this file. Please review the following information to
|
---|
20 | ** ensure the GNU Lesser General Public License version 2.1 requirements
|
---|
21 | ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
---|
22 | **
|
---|
23 | ** In addition, as a special exception, Nokia gives you certain
|
---|
24 | ** additional rights. These rights are described in the Nokia Qt LGPL
|
---|
25 | ** Exception version 1.0, included in the file LGPL_EXCEPTION.txt in this
|
---|
26 | ** package.
|
---|
27 | **
|
---|
28 | ** GNU General Public License Usage
|
---|
29 | ** Alternatively, this file may be used under the terms of the GNU
|
---|
30 | ** General Public License version 3.0 as published by the Free Software
|
---|
31 | ** Foundation and appearing in the file LICENSE.GPL included in the
|
---|
32 | ** packaging of this file. Please review the following information to
|
---|
33 | ** ensure the GNU General Public License version 3.0 requirements will be
|
---|
34 | ** met: http://www.gnu.org/copyleft/gpl.html.
|
---|
35 | **
|
---|
36 | ** If you are unsure which license is appropriate for your use, please
|
---|
37 | ** contact the sales department at [email protected].
|
---|
38 | ** $QT_END_LICENSE$
|
---|
39 | **
|
---|
40 | ****************************************************************************/
|
---|
41 |
|
---|
42 | #ifndef VECTOR_H
|
---|
43 | #define VECTOR_H
|
---|
44 |
|
---|
45 | #include <cassert>
|
---|
46 | #include <cmath>
|
---|
47 | #include <iostream>
|
---|
48 |
|
---|
49 | namespace gfx
|
---|
50 | {
|
---|
51 |
|
---|
52 | template<class T, int n>
|
---|
53 | struct Vector
|
---|
54 | {
|
---|
55 | // Keep the Vector struct a plain old data (POD) struct by avoiding constructors
|
---|
56 |
|
---|
57 | static Vector vector(T x)
|
---|
58 | {
|
---|
59 | Vector result;
|
---|
60 | for (int i = 0; i < n; ++i)
|
---|
61 | result.v[i] = x;
|
---|
62 | return result;
|
---|
63 | }
|
---|
64 |
|
---|
65 | // Use only for 2D vectors
|
---|
66 | static Vector vector(T x, T y)
|
---|
67 | {
|
---|
68 | assert(n == 2);
|
---|
69 | Vector result;
|
---|
70 | result.v[0] = x;
|
---|
71 | result.v[1] = y;
|
---|
72 | return result;
|
---|
73 | }
|
---|
74 |
|
---|
75 | // Use only for 3D vectors
|
---|
76 | static Vector vector(T x, T y, T z)
|
---|
77 | {
|
---|
78 | assert(n == 3);
|
---|
79 | Vector result;
|
---|
80 | result.v[0] = x;
|
---|
81 | result.v[1] = y;
|
---|
82 | result.v[2] = z;
|
---|
83 | return result;
|
---|
84 | }
|
---|
85 |
|
---|
86 | // Use only for 4D vectors
|
---|
87 | static Vector vector(T x, T y, T z, T w)
|
---|
88 | {
|
---|
89 | assert(n == 4);
|
---|
90 | Vector result;
|
---|
91 | result.v[0] = x;
|
---|
92 | result.v[1] = y;
|
---|
93 | result.v[2] = z;
|
---|
94 | result.v[3] = w;
|
---|
95 | return result;
|
---|
96 | }
|
---|
97 |
|
---|
98 | // Pass 'n' arguments to this function.
|
---|
99 | static Vector vector(T *v)
|
---|
100 | {
|
---|
101 | Vector result;
|
---|
102 | for (int i = 0; i < n; ++i)
|
---|
103 | result.v[i] = v[i];
|
---|
104 | return result;
|
---|
105 | }
|
---|
106 |
|
---|
107 | T &operator [] (int i) {return v[i];}
|
---|
108 | T operator [] (int i) const {return v[i];}
|
---|
109 |
|
---|
110 | #define VECTOR_BINARY_OP(op, arg, rhs) \
|
---|
111 | Vector operator op (arg) const \
|
---|
112 | { \
|
---|
113 | Vector result; \
|
---|
114 | for (int i = 0; i < n; ++i) \
|
---|
115 | result.v[i] = v[i] op rhs; \
|
---|
116 | return result; \
|
---|
117 | }
|
---|
118 |
|
---|
119 | VECTOR_BINARY_OP(+, const Vector &u, u.v[i])
|
---|
120 | VECTOR_BINARY_OP(-, const Vector &u, u.v[i])
|
---|
121 | VECTOR_BINARY_OP(*, const Vector &u, u.v[i])
|
---|
122 | VECTOR_BINARY_OP(/, const Vector &u, u.v[i])
|
---|
123 | VECTOR_BINARY_OP(+, T s, s)
|
---|
124 | VECTOR_BINARY_OP(-, T s, s)
|
---|
125 | VECTOR_BINARY_OP(*, T s, s)
|
---|
126 | VECTOR_BINARY_OP(/, T s, s)
|
---|
127 | #undef VECTOR_BINARY_OP
|
---|
128 |
|
---|
129 | Vector operator - () const
|
---|
130 | {
|
---|
131 | Vector result;
|
---|
132 | for (int i = 0; i < n; ++i)
|
---|
133 | result.v[i] = -v[i];
|
---|
134 | return result;
|
---|
135 | }
|
---|
136 |
|
---|
137 | #define VECTOR_ASSIGN_OP(op, arg, rhs) \
|
---|
138 | Vector &operator op (arg) \
|
---|
139 | { \
|
---|
140 | for (int i = 0; i < n; ++i) \
|
---|
141 | v[i] op rhs; \
|
---|
142 | return *this; \
|
---|
143 | }
|
---|
144 |
|
---|
145 | VECTOR_ASSIGN_OP(+=, const Vector &u, u.v[i])
|
---|
146 | VECTOR_ASSIGN_OP(-=, const Vector &u, u.v[i])
|
---|
147 | VECTOR_ASSIGN_OP(=, T s, s)
|
---|
148 | VECTOR_ASSIGN_OP(*=, T s, s)
|
---|
149 | VECTOR_ASSIGN_OP(/=, T s, s)
|
---|
150 | #undef VECTOR_ASSIGN_OP
|
---|
151 |
|
---|
152 | static T dot(const Vector &u, const Vector &v)
|
---|
153 | {
|
---|
154 | T sum(0);
|
---|
155 | for (int i = 0; i < n; ++i)
|
---|
156 | sum += u.v[i] * v.v[i];
|
---|
157 | return sum;
|
---|
158 | }
|
---|
159 |
|
---|
160 | static Vector cross(const Vector &u, const Vector &v)
|
---|
161 | {
|
---|
162 | assert(n == 3);
|
---|
163 | return vector(u.v[1] * v.v[2] - u.v[2] * v.v[1],
|
---|
164 | u.v[2] * v.v[0] - u.v[0] * v.v[2],
|
---|
165 | u.v[0] * v.v[1] - u.v[1] * v.v[0]);
|
---|
166 | }
|
---|
167 |
|
---|
168 | T sqrNorm() const
|
---|
169 | {
|
---|
170 | return dot(*this, *this);
|
---|
171 | }
|
---|
172 |
|
---|
173 | // requires floating point type T
|
---|
174 | void normalize()
|
---|
175 | {
|
---|
176 | T s = sqrNorm();
|
---|
177 | if (s != 0)
|
---|
178 | *this /= sqrt(s);
|
---|
179 | }
|
---|
180 |
|
---|
181 | // requires floating point type T
|
---|
182 | Vector normalized() const
|
---|
183 | {
|
---|
184 | T s = sqrNorm();
|
---|
185 | if (s == 0)
|
---|
186 | return *this;
|
---|
187 | return *this / sqrt(s);
|
---|
188 | }
|
---|
189 |
|
---|
190 | T *bits() {return v;}
|
---|
191 | const T *bits() const {return v;}
|
---|
192 |
|
---|
193 | T v[n];
|
---|
194 | };
|
---|
195 |
|
---|
196 | #define SCALAR_VECTOR_BINARY_OP(op) \
|
---|
197 | template<class T, int n> \
|
---|
198 | Vector<T, n> operator op (T s, const Vector<T, n>& u) \
|
---|
199 | { \
|
---|
200 | Vector<T, n> result; \
|
---|
201 | for (int i = 0; i < n; ++i) \
|
---|
202 | result[i] = s op u[i]; \
|
---|
203 | return result; \
|
---|
204 | }
|
---|
205 |
|
---|
206 | SCALAR_VECTOR_BINARY_OP(+)
|
---|
207 | SCALAR_VECTOR_BINARY_OP(-)
|
---|
208 | SCALAR_VECTOR_BINARY_OP(*)
|
---|
209 | SCALAR_VECTOR_BINARY_OP(/)
|
---|
210 | #undef SCALAR_VECTOR_BINARY_OP
|
---|
211 |
|
---|
212 | template<class T, int n>
|
---|
213 | std::ostream &operator << (std::ostream &os, const Vector<T, n> &v)
|
---|
214 | {
|
---|
215 | assert(n > 0);
|
---|
216 | os << "[" << v[0];
|
---|
217 | for (int i = 1; i < n; ++i)
|
---|
218 | os << ", " << v[i];
|
---|
219 | os << "]";
|
---|
220 | return os;
|
---|
221 | }
|
---|
222 |
|
---|
223 | typedef Vector<float, 2> Vector2f;
|
---|
224 | typedef Vector<float, 3> Vector3f;
|
---|
225 | typedef Vector<float, 4> Vector4f;
|
---|
226 |
|
---|
227 | template<class T, int rows, int cols>
|
---|
228 | struct Matrix
|
---|
229 | {
|
---|
230 | // Keep the Matrix struct a plain old data (POD) struct by avoiding constructors
|
---|
231 |
|
---|
232 | static Matrix matrix(T x)
|
---|
233 | {
|
---|
234 | Matrix result;
|
---|
235 | for (int i = 0; i < rows; ++i) {
|
---|
236 | for (int j = 0; j < cols; ++j)
|
---|
237 | result.v[i][j] = x;
|
---|
238 | }
|
---|
239 | return result;
|
---|
240 | }
|
---|
241 |
|
---|
242 | static Matrix matrix(T *m)
|
---|
243 | {
|
---|
244 | Matrix result;
|
---|
245 | for (int i = 0; i < rows; ++i) {
|
---|
246 | for (int j = 0; j < cols; ++j) {
|
---|
247 | result.v[i][j] = *m;
|
---|
248 | ++m;
|
---|
249 | }
|
---|
250 | }
|
---|
251 | return result;
|
---|
252 | }
|
---|
253 |
|
---|
254 | T &operator () (int i, int j) {return v[i][j];}
|
---|
255 | T operator () (int i, int j) const {return v[i][j];}
|
---|
256 | Vector<T, cols> &operator [] (int i) {return v[i];}
|
---|
257 | const Vector<T, cols> &operator [] (int i) const {return v[i];}
|
---|
258 |
|
---|
259 | // TODO: operators, methods
|
---|
260 |
|
---|
261 | Vector<T, rows> operator * (const Vector<T, cols> &u) const
|
---|
262 | {
|
---|
263 | Vector<T, rows> result;
|
---|
264 | for (int i = 0; i < rows; ++i)
|
---|
265 | result[i] = Vector<T, cols>::dot(v[i], u);
|
---|
266 | return result;
|
---|
267 | }
|
---|
268 |
|
---|
269 | template<int k>
|
---|
270 | Matrix<T, rows, k> operator * (const Matrix<T, cols, k> &m)
|
---|
271 | {
|
---|
272 | Matrix<T, rows, k> result;
|
---|
273 | for (int i = 0; i < rows; ++i)
|
---|
274 | result[i] = v[i] * m;
|
---|
275 | return result;
|
---|
276 | }
|
---|
277 |
|
---|
278 | T* bits() {return reinterpret_cast<T *>(this);}
|
---|
279 | const T* bits() const {return reinterpret_cast<const T *>(this);}
|
---|
280 |
|
---|
281 | // Simple Gauss elimination.
|
---|
282 | // TODO: Optimize and improve stability.
|
---|
283 | Matrix inverse(bool *ok = 0) const
|
---|
284 | {
|
---|
285 | assert(rows == cols);
|
---|
286 | Matrix rhs = identity();
|
---|
287 | Matrix lhs(*this);
|
---|
288 | T temp;
|
---|
289 | // Down
|
---|
290 | for (int i = 0; i < rows; ++i) {
|
---|
291 | // Pivoting
|
---|
292 | int pivot = i;
|
---|
293 | for (int j = i; j < rows; ++j) {
|
---|
294 | if (qAbs(lhs(j, i)) > lhs(pivot, i))
|
---|
295 | pivot = j;
|
---|
296 | }
|
---|
297 | // TODO: fuzzy compare.
|
---|
298 | if (lhs(pivot, i) == T(0)) {
|
---|
299 | if (ok)
|
---|
300 | *ok = false;
|
---|
301 | return rhs;
|
---|
302 | }
|
---|
303 | if (pivot != i) {
|
---|
304 | for (int j = i; j < cols; ++j) {
|
---|
305 | temp = lhs(pivot, j);
|
---|
306 | lhs(pivot, j) = lhs(i, j);
|
---|
307 | lhs(i, j) = temp;
|
---|
308 | }
|
---|
309 | for (int j = 0; j < cols; ++j) {
|
---|
310 | temp = rhs(pivot, j);
|
---|
311 | rhs(pivot, j) = rhs(i, j);
|
---|
312 | rhs(i, j) = temp;
|
---|
313 | }
|
---|
314 | }
|
---|
315 |
|
---|
316 | // Normalize i-th row
|
---|
317 | rhs[i] /= lhs(i, i);
|
---|
318 | for (int j = cols - 1; j > i; --j)
|
---|
319 | lhs(i, j) /= lhs(i, i);
|
---|
320 |
|
---|
321 | // Eliminate non-zeros in i-th column below the i-th row.
|
---|
322 | for (int j = i + 1; j < rows; ++j) {
|
---|
323 | rhs[j] -= lhs(j, i) * rhs[i];
|
---|
324 | for (int k = i + 1; k < cols; ++k)
|
---|
325 | lhs(j, k) -= lhs(j, i) * lhs(i, k);
|
---|
326 | }
|
---|
327 | }
|
---|
328 | // Up
|
---|
329 | for (int i = rows - 1; i > 0; --i) {
|
---|
330 | for (int j = i - 1; j >= 0; --j)
|
---|
331 | rhs[j] -= lhs(j, i) * rhs[i];
|
---|
332 | }
|
---|
333 | if (ok)
|
---|
334 | *ok = true;
|
---|
335 | return rhs;
|
---|
336 | }
|
---|
337 |
|
---|
338 | Matrix<T, cols, rows> transpose() const
|
---|
339 | {
|
---|
340 | Matrix<T, cols, rows> result;
|
---|
341 | for (int i = 0; i < rows; ++i) {
|
---|
342 | for (int j = 0; j < cols; ++j)
|
---|
343 | result.v[j][i] = v[i][j];
|
---|
344 | }
|
---|
345 | return result;
|
---|
346 | }
|
---|
347 |
|
---|
348 | static Matrix identity()
|
---|
349 | {
|
---|
350 | Matrix result = matrix(T(0));
|
---|
351 | for (int i = 0; i < rows && i < cols; ++i)
|
---|
352 | result.v[i][i] = T(1);
|
---|
353 | return result;
|
---|
354 | }
|
---|
355 |
|
---|
356 | Vector<T, cols> v[rows];
|
---|
357 | };
|
---|
358 |
|
---|
359 | template<class T, int rows, int cols>
|
---|
360 | Vector<T, cols> operator * (const Vector<T, rows> &u, const Matrix<T, rows, cols> &m)
|
---|
361 | {
|
---|
362 | Vector<T, cols> result = Vector<T, cols>::vector(T(0));
|
---|
363 | for (int i = 0; i < rows; ++i)
|
---|
364 | result += m[i] * u[i];
|
---|
365 | return result;
|
---|
366 | }
|
---|
367 |
|
---|
368 | template<class T, int rows, int cols>
|
---|
369 | std::ostream &operator << (std::ostream &os, const Matrix<T, rows, cols> &m)
|
---|
370 | {
|
---|
371 | assert(rows > 0);
|
---|
372 | os << "[" << m[0];
|
---|
373 | for (int i = 1; i < rows; ++i)
|
---|
374 | os << ", " << m[i];
|
---|
375 | os << "]";
|
---|
376 | return os;
|
---|
377 | }
|
---|
378 |
|
---|
379 |
|
---|
380 | typedef Matrix<float, 2, 2> Matrix2x2f;
|
---|
381 | typedef Matrix<float, 3, 3> Matrix3x3f;
|
---|
382 | typedef Matrix<float, 4, 4> Matrix4x4f;
|
---|
383 |
|
---|
384 | template<class T>
|
---|
385 | struct Quaternion
|
---|
386 | {
|
---|
387 | // Keep the Quaternion struct a plain old data (POD) struct by avoiding constructors
|
---|
388 |
|
---|
389 | static Quaternion quaternion(T s, T x, T y, T z)
|
---|
390 | {
|
---|
391 | Quaternion result;
|
---|
392 | result.scalar = s;
|
---|
393 | result.vector[0] = x;
|
---|
394 | result.vector[1] = y;
|
---|
395 | result.vector[2] = z;
|
---|
396 | return result;
|
---|
397 | }
|
---|
398 |
|
---|
399 | static Quaternion quaternion(T s, const Vector<T, 3> &v)
|
---|
400 | {
|
---|
401 | Quaternion result;
|
---|
402 | result.scalar = s;
|
---|
403 | result.vector = v;
|
---|
404 | return result;
|
---|
405 | }
|
---|
406 |
|
---|
407 | static Quaternion identity()
|
---|
408 | {
|
---|
409 | return quaternion(T(1), T(0), T(0), T(0));
|
---|
410 | }
|
---|
411 |
|
---|
412 | // assumes that all the elements are packed tightly
|
---|
413 | T& operator [] (int i) {return reinterpret_cast<T *>(this)[i];}
|
---|
414 | T operator [] (int i) const {return reinterpret_cast<const T *>(this)[i];}
|
---|
415 |
|
---|
416 | #define QUATERNION_BINARY_OP(op, arg, rhs) \
|
---|
417 | Quaternion operator op (arg) const \
|
---|
418 | { \
|
---|
419 | Quaternion result; \
|
---|
420 | for (int i = 0; i < 4; ++i) \
|
---|
421 | result[i] = (*this)[i] op rhs; \
|
---|
422 | return result; \
|
---|
423 | }
|
---|
424 |
|
---|
425 | QUATERNION_BINARY_OP(+, const Quaternion &q, q[i])
|
---|
426 | QUATERNION_BINARY_OP(-, const Quaternion &q, q[i])
|
---|
427 | QUATERNION_BINARY_OP(*, T s, s)
|
---|
428 | QUATERNION_BINARY_OP(/, T s, s)
|
---|
429 | #undef QUATERNION_BINARY_OP
|
---|
430 |
|
---|
431 | Quaternion operator - () const
|
---|
432 | {
|
---|
433 | return Quaternion(-scalar, -vector);
|
---|
434 | }
|
---|
435 |
|
---|
436 | Quaternion operator * (const Quaternion &q) const
|
---|
437 | {
|
---|
438 | Quaternion result;
|
---|
439 | result.scalar = scalar * q.scalar - Vector<T, 3>::dot(vector, q.vector);
|
---|
440 | result.vector = scalar * q.vector + vector * q.scalar + Vector<T, 3>::cross(vector, q.vector);
|
---|
441 | return result;
|
---|
442 | }
|
---|
443 |
|
---|
444 | Quaternion operator * (const Vector<T, 3> &v) const
|
---|
445 | {
|
---|
446 | Quaternion result;
|
---|
447 | result.scalar = -Vector<T, 3>::dot(vector, v);
|
---|
448 | result.vector = scalar * v + Vector<T, 3>::cross(vector, v);
|
---|
449 | return result;
|
---|
450 | }
|
---|
451 |
|
---|
452 | friend Quaternion operator * (const Vector<T, 3> &v, const Quaternion &q)
|
---|
453 | {
|
---|
454 | Quaternion result;
|
---|
455 | result.scalar = -Vector<T, 3>::dot(v, q.vector);
|
---|
456 | result.vector = v * q.scalar + Vector<T, 3>::cross(v, q.vector);
|
---|
457 | return result;
|
---|
458 | }
|
---|
459 |
|
---|
460 | #define QUATERNION_ASSIGN_OP(op, arg, rhs) \
|
---|
461 | Quaternion &operator op (arg) \
|
---|
462 | { \
|
---|
463 | for (int i = 0; i < 4; ++i) \
|
---|
464 | (*this)[i] op rhs; \
|
---|
465 | return *this; \
|
---|
466 | }
|
---|
467 |
|
---|
468 | QUATERNION_ASSIGN_OP(+=, const Quaternion &q, q[i])
|
---|
469 | QUATERNION_ASSIGN_OP(-=, const Quaternion &q, q[i])
|
---|
470 | QUATERNION_ASSIGN_OP(=, T s, s)
|
---|
471 | QUATERNION_ASSIGN_OP(*=, T s, s)
|
---|
472 | QUATERNION_ASSIGN_OP(/=, T s, s)
|
---|
473 | #undef QUATERNION_ASSIGN_OP
|
---|
474 |
|
---|
475 | Quaternion& operator *= (const Quaternion &q)
|
---|
476 | {
|
---|
477 | Quaternion result;
|
---|
478 | result.scalar = scalar * q.scalar - Vector<T, 3>::dot(vector, q.vector);
|
---|
479 | result.vector = scalar * q.vector + vector * q.scalar + Vector<T, 3>::cross(vector, q.vector);
|
---|
480 | return (*this = result);
|
---|
481 | }
|
---|
482 |
|
---|
483 | Quaternion& operator *= (const Vector<T, 3> &v)
|
---|
484 | {
|
---|
485 | Quaternion result;
|
---|
486 | result.scalar = -Vector<T, 3>::dot(vector, v);
|
---|
487 | result.vector = scalar * v + Vector<T, 3>::cross(vector, v);
|
---|
488 | return (*this = result);
|
---|
489 | }
|
---|
490 |
|
---|
491 | Quaternion conjugate() const
|
---|
492 | {
|
---|
493 | return quaternion(scalar, -vector);
|
---|
494 | }
|
---|
495 |
|
---|
496 | T sqrNorm() const
|
---|
497 | {
|
---|
498 | return scalar * scalar + vector.sqrNorm();
|
---|
499 | }
|
---|
500 |
|
---|
501 | Quaternion inverse() const
|
---|
502 | {
|
---|
503 | return conjugate() / sqrNorm();
|
---|
504 | }
|
---|
505 |
|
---|
506 | // requires floating point type T
|
---|
507 | Quaternion normalized() const
|
---|
508 | {
|
---|
509 | T s = sqrNorm();
|
---|
510 | if (s == 0)
|
---|
511 | return *this;
|
---|
512 | return *this / sqrt(s);
|
---|
513 | }
|
---|
514 |
|
---|
515 | void matrix(Matrix<T, 3, 3>& m) const
|
---|
516 | {
|
---|
517 | T bb = vector[0] * vector[0];
|
---|
518 | T cc = vector[1] * vector[1];
|
---|
519 | T dd = vector[2] * vector[2];
|
---|
520 | T diag = scalar * scalar - bb - cc - dd;
|
---|
521 | T ab = scalar * vector[0];
|
---|
522 | T ac = scalar * vector[1];
|
---|
523 | T ad = scalar * vector[2];
|
---|
524 | T bc = vector[0] * vector[1];
|
---|
525 | T cd = vector[1] * vector[2];
|
---|
526 | T bd = vector[2] * vector[0];
|
---|
527 | m(0, 0) = diag + 2 * bb;
|
---|
528 | m(0, 1) = 2 * (bc - ad);
|
---|
529 | m(0, 2) = 2 * (ac + bd);
|
---|
530 | m(1, 0) = 2 * (ad + bc);
|
---|
531 | m(1, 1) = diag + 2 * cc;
|
---|
532 | m(1, 2) = 2 * (cd - ab);
|
---|
533 | m(2, 0) = 2 * (bd - ac);
|
---|
534 | m(2, 1) = 2 * (ab + cd);
|
---|
535 | m(2, 2) = diag + 2 * dd;
|
---|
536 | }
|
---|
537 |
|
---|
538 | void matrix(Matrix<T, 4, 4>& m) const
|
---|
539 | {
|
---|
540 | T bb = vector[0] * vector[0];
|
---|
541 | T cc = vector[1] * vector[1];
|
---|
542 | T dd = vector[2] * vector[2];
|
---|
543 | T diag = scalar * scalar - bb - cc - dd;
|
---|
544 | T ab = scalar * vector[0];
|
---|
545 | T ac = scalar * vector[1];
|
---|
546 | T ad = scalar * vector[2];
|
---|
547 | T bc = vector[0] * vector[1];
|
---|
548 | T cd = vector[1] * vector[2];
|
---|
549 | T bd = vector[2] * vector[0];
|
---|
550 | m(0, 0) = diag + 2 * bb;
|
---|
551 | m(0, 1) = 2 * (bc - ad);
|
---|
552 | m(0, 2) = 2 * (ac + bd);
|
---|
553 | m(0, 3) = 0;
|
---|
554 | m(1, 0) = 2 * (ad + bc);
|
---|
555 | m(1, 1) = diag + 2 * cc;
|
---|
556 | m(1, 2) = 2 * (cd - ab);
|
---|
557 | m(1, 3) = 0;
|
---|
558 | m(2, 0) = 2 * (bd - ac);
|
---|
559 | m(2, 1) = 2 * (ab + cd);
|
---|
560 | m(2, 2) = diag + 2 * dd;
|
---|
561 | m(2, 3) = 0;
|
---|
562 | m(3, 0) = 0;
|
---|
563 | m(3, 1) = 0;
|
---|
564 | m(3, 2) = 0;
|
---|
565 | m(3, 3) = 1;
|
---|
566 | }
|
---|
567 |
|
---|
568 | // assumes that 'this' is normalized
|
---|
569 | Vector<T, 3> transform(const Vector<T, 3> &v) const
|
---|
570 | {
|
---|
571 | Matrix<T, 3, 3> m;
|
---|
572 | matrix(m);
|
---|
573 | return v * m;
|
---|
574 | }
|
---|
575 |
|
---|
576 | // assumes that all the elements are packed tightly
|
---|
577 | T* bits() {return reinterpret_cast<T *>(this);}
|
---|
578 | const T* bits() const {return reinterpret_cast<const T *>(this);}
|
---|
579 |
|
---|
580 | // requires floating point type T
|
---|
581 | static Quaternion rotation(T angle, const Vector<T, 3> &unitAxis)
|
---|
582 | {
|
---|
583 | T s = sin(angle / 2);
|
---|
584 | T c = cos(angle / 2);
|
---|
585 | return quaternion(c, unitAxis * s);
|
---|
586 | }
|
---|
587 |
|
---|
588 | T scalar;
|
---|
589 | Vector<T, 3> vector;
|
---|
590 | };
|
---|
591 |
|
---|
592 | template<class T>
|
---|
593 | Quaternion<T> operator * (T s, const Quaternion<T>& q)
|
---|
594 | {
|
---|
595 | return Quaternion<T>::quaternion(s * q.scalar, s * q.vector);
|
---|
596 | }
|
---|
597 |
|
---|
598 | typedef Quaternion<float> Quaternionf;
|
---|
599 |
|
---|
600 | } // end namespace gfx
|
---|
601 |
|
---|
602 | #endif
|
---|