source: trunk/src/gcc/libjava/java/util/BitSet.java@ 741

Last change on this file since 741 was 2, checked in by bird, 23 years ago

Initial revision

  • Property cvs2svn:cvs-rev set to 1.1
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 20.3 KB
Line 
1/* BitSet.java -- A vector of bits.
2 Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
4This file is part of GNU Classpath.
5
6GNU Classpath is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU Classpath is distributed in the hope that it will be useful, but
12WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU Classpath; see the file COPYING. If not, write to the
18Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
1902111-1307 USA.
20
21Linking this library statically or dynamically with other modules is
22making a combined work based on this library. Thus, the terms and
23conditions of the GNU General Public License cover the whole
24combination.
25
26As a special exception, the copyright holders of this library give you
27permission to link this library with independent modules to produce an
28executable, regardless of the license terms of these independent
29modules, and to copy and distribute the resulting executable under
30terms of your choice, provided that you also meet, for each linked
31independent module, the terms and conditions of the license of that
32module. An independent module is a module which is not derived from
33or based on this library. If you modify this library, you may extend
34this exception to your version of the library, but you are not
35obligated to do so. If you do not wish to do so, delete this
36exception statement from your version. */
37
38package java.util;
39import java.io.Serializable;
40
41/* Written using "Java Class Libraries", 2nd edition, ISBN 0-201-31002-3
42 * hashCode algorithm taken from JDK 1.2 docs.
43 */
44
45/**
46 * This class can be thought of in two ways. You can see it as a
47 * vector of bits or as a set of non-negative integers. The name
48 * <code>BitSet</code> is a bit misleading.
49 *
50 * It is implemented by a bit vector, but its equally possible to see
51 * it as set of non-negative integer; each integer in the set is
52 * represented by a set bit at the corresponding index. The size of
53 * this structure is determined by the highest integer in the set.
54 *
55 * You can union, intersect and build (symmetric) remainders, by
56 * invoking the logical operations and, or, andNot, resp. xor.
57 *
58 * This implementation is NOT synchronized against concurrent access from
59 * multiple threads. Specifically, if one thread is reading from a bitset
60 * while another thread is simultaneously modifying it, the results are
61 * undefined.
62 *
63 * @author Jochen Hoenicke
64 * @author Tom Tromey <[email protected]>
65 * @author Eric Blake <[email protected]>
66 * @status updated to 1.4
67 */
68public class BitSet implements Cloneable, Serializable
69{
70 /**
71 * Compatible with JDK 1.0.
72 */
73 private static final long serialVersionUID = 7997698588986878753L;
74
75 /**
76 * A common mask.
77 */
78 private static final int LONG_MASK = 0x3f;
79
80 /**
81 * The actual bits.
82 * @serial the i'th bit is in bits[i/64] at position i%64 (where position
83 * 0 is the least significant).
84 */
85 private long[] bits;
86
87 /**
88 * Create a new empty bit set. All bits are initially false.
89 */
90 public BitSet()
91 {
92 this(64);
93 }
94
95 /**
96 * Create a new empty bit set, with a given size. This
97 * constructor reserves enough space to represent the integers
98 * from <code>0</code> to <code>nbits-1</code>.
99 *
100 * @param nbits the initial size of the bit set
101 * @throws NegativeArraySizeException if nbits &lt; 0
102 */
103 public BitSet(int nbits)
104 {
105 if (nbits < 0)
106 throw new NegativeArraySizeException();
107
108 int length = nbits >>> 6;
109 if ((nbits & LONG_MASK) != 0)
110 ++length;
111 bits = new long[length];
112 }
113
114 /**
115 * Performs the logical AND operation on this bit set and the
116 * given <code>set</code>. This means it builds the intersection
117 * of the two sets. The result is stored into this bit set.
118 *
119 * @param set the second bit set
120 * @throws NullPointerException if set is null
121 */
122 public void and(BitSet bs)
123 {
124 int max = Math.min(bits.length, bs.bits.length);
125 int i;
126 for (i = 0; i < max; ++i)
127 bits[i] &= bs.bits[i];
128 while (i < bits.length)
129 bits[i++] = 0;
130 }
131
132 /**
133 * Performs the logical AND operation on this bit set and the
134 * complement of the given <code>set</code>. This means it
135 * selects every element in the first set, that isn't in the
136 * second set. The result is stored into this bit set.
137 *
138 * @param set the second bit set
139 * @throws NullPointerException if set is null
140 * @since 1.2
141 */
142 public void andNot(BitSet bs)
143 {
144 int i = Math.min(bits.length, bs.bits.length);
145 while (--i >= 0)
146 bits[i] &= ~bs.bits[i];
147 }
148
149 /**
150 * Returns the number of bits set to true.
151 *
152 * @return the number of true bits
153 * @since 1.4
154 */
155 public int cardinality()
156 {
157 int card = 0;
158 for (int i = bits.length - 1; i >= 0; i--)
159 {
160 long a = bits[i];
161 // Take care of common cases.
162 if (a == 0)
163 continue;
164 if (a == -1)
165 {
166 card += 64;
167 continue;
168 }
169
170 // Successively collapse alternating bit groups into a sum.
171 a = ((a >> 1) & 0x5555555555555555L) + (a & 0x5555555555555555L);
172 a = ((a >> 2) & 0x3333333333333333L) + (a & 0x3333333333333333L);
173 int b = (int) ((a >>> 32) + a);
174 b = ((b >> 4) & 0x0f0f0f0f) + (b & 0x0f0f0f0f);
175 b = ((b >> 8) & 0x00ff00ff) + (b & 0x00ff00ff);
176 card += ((b >> 16) & 0x0000ffff) + (b & 0x0000ffff);
177 }
178 return card;
179 }
180
181 /**
182 * Sets all bits in the set to false.
183 *
184 * @since 1.4
185 */
186 public void clear()
187 {
188 Arrays.fill(bits, 0);
189 }
190
191 /**
192 * Removes the integer <code>bitIndex</code> from this set. That is
193 * the corresponding bit is cleared. If the index is not in the set,
194 * this method does nothing.
195 *
196 * @param bitIndex a non-negative integer
197 * @throws IndexOutOfBoundsException if bitIndex &lt; 0
198 */
199 public void clear(int pos)
200 {
201 int offset = pos >> 6;
202 ensure(offset);
203 // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
204 // so we'll just let that be our exception.
205 bits[offset] &= ~(1L << pos);
206 }
207
208 /**
209 * Sets the bits between from (inclusive) and to (exclusive) to false.
210 *
211 * @param from the start range (inclusive)
212 * @param to the end range (exclusive)
213 * @throws IndexOutOfBoundsException if from &lt; 0 || from &gt; to
214 * @since 1.4
215 */
216 public void clear(int from, int to)
217 {
218 if (from < 0 || from > to)
219 throw new IndexOutOfBoundsException();
220 if (from == to)
221 return;
222 int lo_offset = from >>> 6;
223 int hi_offset = to >>> 6;
224 ensure(hi_offset);
225 if (lo_offset == hi_offset)
226 {
227 bits[hi_offset] &= ((1L << from) - 1) | (-1L << to);
228 return;
229 }
230
231 bits[lo_offset] &= (1L << from) - 1;
232 bits[hi_offset] &= -1L << to;
233 for (int i = lo_offset + 1; i < hi_offset; i++)
234 bits[i] = 0;
235 }
236
237 /**
238 * Create a clone of this bit set, that is an instance of the same
239 * class and contains the same elements. But it doesn't change when
240 * this bit set changes.
241 *
242 * @return the clone of this object.
243 */
244 public Object clone()
245 {
246 try
247 {
248 BitSet bs = (BitSet) super.clone();
249 bs.bits = (long[]) bits.clone();
250 return bs;
251 }
252 catch (CloneNotSupportedException e)
253 {
254 // Impossible to get here.
255 return null;
256 }
257 }
258
259 /**
260 * Returns true if the <code>obj</code> is a bit set that contains
261 * exactly the same elements as this bit set, otherwise false.
262 *
263 * @param obj the object to compare to
264 * @return true if obj equals this bit set
265 */
266 public boolean equals(Object obj)
267 {
268 if (!(obj instanceof BitSet))
269 return false;
270 BitSet bs = (BitSet) obj;
271 int max = Math.min(bits.length, bs.bits.length);
272 int i;
273 for (i = 0; i < max; ++i)
274 if (bits[i] != bs.bits[i])
275 return false;
276 // If one is larger, check to make sure all extra bits are 0.
277 for (int j = i; j < bits.length; ++j)
278 if (bits[j] != 0)
279 return false;
280 for (int j = i; j < bs.bits.length; ++j)
281 if (bs.bits[j] != 0)
282 return false;
283 return true;
284 }
285
286 /**
287 * Sets the bit at the index to the opposite value.
288 *
289 * @param index the index of the bit
290 * @throws IndexOutOfBoundsException if index is negative
291 * @since 1.4
292 */
293 public void flip(int index)
294 {
295 int offset = index >> 6;
296 ensure(offset);
297 // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
298 // so we'll just let that be our exception.
299 bits[offset] ^= 1L << index;
300 }
301
302 /**
303 * Sets a range of bits to the opposite value.
304 *
305 * @param from the low index (inclusive)
306 * @param to the high index (exclusive)
307 * @throws IndexOutOfBoundsException if from &gt; to || from &lt; 0
308 * @since 1.4
309 */
310 public void flip(int from, int to)
311 {
312 if (from < 0 || from > to)
313 throw new IndexOutOfBoundsException();
314 if (from == to)
315 return;
316 int lo_offset = from >>> 6;
317 int hi_offset = to >>> 6;
318 ensure(hi_offset);
319 if (lo_offset == hi_offset)
320 {
321 bits[hi_offset] ^= (-1L << from) & ((1L << to) - 1);
322 return;
323 }
324
325 bits[lo_offset] ^= -1L << from;
326 bits[hi_offset] ^= (1L << to) - 1;
327 for (int i = lo_offset + 1; i < hi_offset; i++)
328 bits[i] ^= -1;
329 }
330
331 /**
332 * Returns true if the integer <code>bitIndex</code> is in this bit
333 * set, otherwise false.
334 *
335 * @param pos a non-negative integer
336 * @return the value of the bit at the specified index
337 * @throws IndexOutOfBoundsException if the index is negative
338 */
339 public boolean get(int pos)
340 {
341 int offset = pos >> 6;
342 if (offset >= bits.length)
343 return false;
344 // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
345 // so we'll just let that be our exception.
346 return (bits[offset] & (1L << pos)) != 0;
347 }
348
349 /**
350 * Returns a new <code>BitSet</code> composed of a range of bits from
351 * this one.
352 *
353 * @param from the low index (inclusive)
354 * @param to the high index (exclusive)
355 * @throws IndexOutOfBoundsException if from &gt; to || from &lt; 0
356 * @since 1.4
357 */
358 public BitSet get(int from, int to)
359 {
360 if (from < 0 || from > to)
361 throw new IndexOutOfBoundsException();
362 BitSet bs = new BitSet(to - from);
363 int lo_offset = from >>> 6;
364 if (lo_offset >= bits.length)
365 return bs;
366
367 int lo_bit = from & LONG_MASK;
368 int hi_offset = to >>> 6;
369 if (lo_bit == 0)
370 {
371 int len = Math.min(hi_offset - lo_offset + 1, bits.length - lo_offset);
372 System.arraycopy(bits, lo_offset, bs.bits, 0, len);
373 if (hi_offset < bits.length)
374 bs.bits[hi_offset - lo_offset] &= (1L << to) - 1;
375 return bs;
376 }
377
378 int len = Math.min(hi_offset, bits.length - 1);
379 int reverse = ~lo_bit;
380 int i;
381 for (i = 0; lo_offset < len; lo_offset++, i++)
382 bs.bits[i] = ((bits[lo_offset] >>> lo_bit)
383 | (bits[lo_offset + 1] << reverse));
384 if ((to & LONG_MASK) > lo_bit)
385 bs.bits[i++] = bits[lo_offset] >>> lo_bit;
386 if (hi_offset < bits.length)
387 bs.bits[i - 1] &= (1L << (to - from)) - 1;
388 return bs;
389 }
390
391 /**
392 * Returns a hash code value for this bit set. The hash code of
393 * two bit sets containing the same integers is identical. The algorithm
394 * used to compute it is as follows:
395 *
396 * Suppose the bits in the BitSet were to be stored in an array of
397 * long integers called <code>bits</code>, in such a manner that
398 * bit <code>k</code> is set in the BitSet (for non-negative values
399 * of <code>k</code>) if and only if
400 *
401 * <pre>
402 * ((k/64) < bits.length) && ((bits[k/64] & (1L << (bit % 64))) != 0)
403 * </pre>
404 *
405 * Then the following definition of the hashCode method
406 * would be a correct implementation of the actual algorithm:
407 *
408 * <pre>
409 * public int hashCode() {
410 * long h = 1234;
411 * for (int i = bits.length-1; i>=0; i--) {
412 * h ^= bits[i] * (i + 1);
413 * }
414 * return (int)((h >> 32) ^ h);
415 * }
416 * </pre>
417 *
418 * Note that the hash code values changes, if the set is changed.
419 *
420 * @return the hash code value for this bit set.
421 */
422 public int hashCode()
423 {
424 long h = 1234;
425 for (int i = bits.length; i > 0; )
426 h ^= i * bits[--i];
427 return (int) ((h >> 32) ^ h);
428 }
429
430 /**
431 * Returns true if the specified BitSet and this one share at least one
432 * common true bit.
433 *
434 * @param set the set to check for intersection
435 * @return true if the sets intersect
436 * @throws NullPointerException if set is null
437 * @since 1.4
438 */
439 public boolean intersects(BitSet set)
440 {
441 int i = Math.min(bits.length, set.bits.length);
442 while (--i >= 0)
443 if ((bits[i] & set.bits[i]) != 0)
444 return true;
445 return false;
446 }
447
448 /**
449 * Returns true if this set contains no true bits.
450 *
451 * @return true if all bits are false
452 * @since 1.4
453 */
454 public boolean isEmpty()
455 {
456 for (int i = bits.length - 1; i >= 0; i--)
457 if (bits[i] != 0)
458 return false;
459 return true;
460 }
461
462 /**
463 * Returns the logical number of bits actually used by this bit
464 * set. It returns the index of the highest set bit plus one.
465 * Note that this method doesn't return the number of set bits.
466 *
467 * @return the index of the highest set bit plus one.
468 */
469 public int length()
470 {
471 // Set i to highest index that contains a non-zero value.
472 int i;
473 for (i = bits.length - 1; i >= 0 && bits[i] == 0; --i)
474 ;
475
476 // if i < 0 all bits are cleared.
477 if (i < 0)
478 return 0;
479
480 // Now determine the exact length.
481 long b = bits[i];
482 int len = (i + 1) * 64;
483 // b >= 0 checks if the highest bit is zero.
484 while (b >= 0)
485 {
486 --len;
487 b <<= 1;
488 }
489
490 return len;
491 }
492
493 /**
494 * Returns the index of the next false bit, from the specified bit
495 * (inclusive).
496 *
497 * @param from the start location
498 * @return the first false bit
499 * @throws IndexOutOfBoundsException if from is negative
500 * @since 1.4
501 */
502 public int nextClearBit(int from)
503 {
504 int offset = from >> 6;
505 long mask = 1L << from;
506 while (offset < bits.length)
507 {
508 // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
509 // so we'll just let that be our exception.
510 long h = bits[offset];
511 do
512 {
513 if ((h & mask) == 0)
514 return from;
515 mask <<= 1;
516 from++;
517 }
518 while (mask != 0);
519 mask = 1;
520 offset++;
521 }
522 return from;
523 }
524
525 /**
526 * Returns the index of the next true bit, from the specified bit
527 * (inclusive). If there is none, -1 is returned. You can iterate over
528 * all true bits with this loop:<br>
529 * <pre>
530 * for (int i = bs.nextSetBit(0); i >= 0; i = bs.nextSetBit(i + 1))
531 * { // operate on i here }
532 * </pre>
533 *
534 * @param from the start location
535 * @return the first true bit, or -1
536 * @throws IndexOutOfBoundsException if from is negative
537 * @since 1.4
538 */
539 public int nextSetBit(int from)
540 {
541 int offset = from >> 6;
542 long mask = 1L << from;
543 while (offset < bits.length)
544 {
545 // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
546 // so we'll just let that be our exception.
547 long h = bits[offset];
548 do
549 {
550 if ((h & mask) != 0)
551 return from;
552 mask <<= 1;
553 from++;
554 }
555 while (mask != 0);
556 mask = 1;
557 offset++;
558 }
559 return -1;
560 }
561
562 /**
563 * Performs the logical OR operation on this bit set and the
564 * given <code>set</code>. This means it builds the union
565 * of the two sets. The result is stored into this bit set, which
566 * grows as necessary.
567 *
568 * @param bs the second bit set
569 * @throws NullPointerException if bs is null
570 */
571 public void or(BitSet bs)
572 {
573 ensure(bs.bits.length - 1);
574 for (int i = bs.bits.length - 1; i >= 0; i--)
575 bits[i] |= bs.bits[i];
576 }
577
578 /**
579 * Add the integer <code>bitIndex</code> to this set. That is
580 * the corresponding bit is set to true. If the index was already in
581 * the set, this method does nothing. The size of this structure
582 * is automatically increased as necessary.
583 *
584 * @param pos a non-negative integer.
585 * @throws IndexOutOfBoundsException if pos is negative
586 */
587 public void set(int pos)
588 {
589 int offset = pos >> 6;
590 ensure(offset);
591 // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
592 // so we'll just let that be our exception.
593 bits[offset] |= 1L << pos;
594 }
595
596 /**
597 * Sets the bit at the given index to the specified value. The size of
598 * this structure is automatically increased as necessary.
599 *
600 * @param index the position to set
601 * @param value the value to set it to
602 * @throws IndexOutOfBoundsException if index is negative
603 * @since 1.4
604 */
605 public void set(int index, boolean value)
606 {
607 if (value)
608 set(index);
609 else
610 clear(index);
611 }
612
613 /**
614 * Sets the bits between from (inclusive) and to (exclusive) to true.
615 *
616 * @param from the start range (inclusive)
617 * @param to the end range (exclusive)
618 * @throws IndexOutOfBoundsException if from &lt; 0 || from &gt; to
619 * @since 1.4
620 */
621 public void set(int from, int to)
622 {
623 if (from < 0 || from > to)
624 throw new IndexOutOfBoundsException();
625 if (from == to)
626 return;
627 int lo_offset = from >>> 6;
628 int hi_offset = to >>> 6;
629 ensure(hi_offset);
630 if (lo_offset == hi_offset)
631 {
632 bits[hi_offset] |= (-1L << from) & ((1L << to) - 1);
633 return;
634 }
635
636 bits[lo_offset] |= -1L << from;
637 bits[hi_offset] |= (1L << to) - 1;
638 for (int i = lo_offset + 1; i < hi_offset; i++)
639 bits[i] = -1;
640 }
641
642 /**
643 * Sets the bits between from (inclusive) and to (exclusive) to the
644 * specified value.
645 *
646 * @param from the start range (inclusive)
647 * @param to the end range (exclusive)
648 * @param value the value to set it to
649 * @throws IndexOutOfBoundsException if from &lt; 0 || from &gt; to
650 * @since 1.4
651 */
652 public void set(int from, int to, boolean value)
653 {
654 if (value)
655 set(from, to);
656 else
657 clear(from, to);
658 }
659
660 /**
661 * Returns the number of bits actually used by this bit set. Note
662 * that this method doesn't return the number of set bits, and that
663 * future requests for larger bits will make this automatically grow.
664 *
665 * @return the number of bits currently used.
666 */
667 public int size()
668 {
669 return bits.length * 64;
670 }
671
672 /**
673 * Returns the string representation of this bit set. This
674 * consists of a comma separated list of the integers in this set
675 * surrounded by curly braces. There is a space after each comma.
676 * A sample string is thus "{1, 3, 53}".
677 * @return the string representation.
678 */
679 public String toString()
680 {
681 StringBuffer r = new StringBuffer("{");
682 boolean first = true;
683 for (int i = 0; i < bits.length; ++i)
684 {
685 long bit = 1;
686 long word = bits[i];
687 if (word == 0)
688 continue;
689 for (int j = 0; j < 64; ++j)
690 {
691 if ((word & bit) != 0)
692 {
693 if (! first)
694 r.append(", ");
695 r.append(64 * i + j);
696 first = false;
697 }
698 bit <<= 1;
699 }
700 }
701 return r.append("}").toString();
702 }
703
704 /**
705 * Performs the logical XOR operation on this bit set and the
706 * given <code>set</code>. This means it builds the symmetric
707 * remainder of the two sets (the elements that are in one set,
708 * but not in the other). The result is stored into this bit set,
709 * which grows as necessary.
710 *
711 * @param bs the second bit set
712 * @throws NullPointerException if bs is null
713 */
714 public void xor(BitSet bs)
715 {
716 ensure(bs.bits.length - 1);
717 for (int i = bs.bits.length - 1; i >= 0; i--)
718 bits[i] ^= bs.bits[i];
719 }
720
721 /**
722 * Make sure the vector is big enough.
723 *
724 * @param lastElt the size needed for the bits array
725 */
726 private final void ensure(int lastElt)
727 {
728 if (lastElt >= bits.length)
729 {
730 long[] nd = new long[lastElt + 1];
731 System.arraycopy(bits, 0, nd, 0, bits.length);
732 bits = nd;
733 }
734 }
735}
Note: See TracBrowser for help on using the repository browser.