| 1 |
|
|---|
| 2 | /* @(#)s_tan.c 5.1 93/09/24 */
|
|---|
| 3 | /*
|
|---|
| 4 | * ====================================================
|
|---|
| 5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|---|
| 6 | *
|
|---|
| 7 | * Developed at SunPro, a Sun Microsystems, Inc. business.
|
|---|
| 8 | * Permission to use, copy, modify, and distribute this
|
|---|
| 9 | * software is freely granted, provided that this notice
|
|---|
| 10 | * is preserved.
|
|---|
| 11 | * ====================================================
|
|---|
| 12 | */
|
|---|
| 13 |
|
|---|
| 14 |
|
|---|
| 15 | /*
|
|---|
| 16 |
|
|---|
| 17 | FUNCTION
|
|---|
| 18 | <<tan>>, <<tanf>>---tangent
|
|---|
| 19 |
|
|---|
| 20 | INDEX
|
|---|
| 21 | tan
|
|---|
| 22 | INDEX
|
|---|
| 23 | tanf
|
|---|
| 24 |
|
|---|
| 25 | ANSI_SYNOPSIS
|
|---|
| 26 | #include <math.h>
|
|---|
| 27 | double tan(double <[x]>);
|
|---|
| 28 | float tanf(float <[x]>);
|
|---|
| 29 |
|
|---|
| 30 | TRAD_SYNOPSIS
|
|---|
| 31 | #include <math.h>
|
|---|
| 32 | double tan(<[x]>)
|
|---|
| 33 | double <[x]>;
|
|---|
| 34 |
|
|---|
| 35 | float tanf(<[x]>)
|
|---|
| 36 | float <[x]>;
|
|---|
| 37 |
|
|---|
| 38 |
|
|---|
| 39 | DESCRIPTION
|
|---|
| 40 | <<tan>> computes the tangent of the argument <[x]>.
|
|---|
| 41 | Angles are specified in radians.
|
|---|
| 42 |
|
|---|
| 43 | <<tanf>> is identical, save that it takes and returns <<float>> values.
|
|---|
| 44 |
|
|---|
| 45 | RETURNS
|
|---|
| 46 | The tangent of <[x]> is returned.
|
|---|
| 47 |
|
|---|
| 48 | PORTABILITY
|
|---|
| 49 | <<tan>> is ANSI. <<tanf>> is an extension.
|
|---|
| 50 | */
|
|---|
| 51 |
|
|---|
| 52 | /* tan(x)
|
|---|
| 53 | * Return tangent function of x.
|
|---|
| 54 | *
|
|---|
| 55 | * kernel function:
|
|---|
| 56 | * __kernel_tan ... tangent function on [-pi/4,pi/4]
|
|---|
| 57 | * __ieee754_rem_pio2 ... argument reduction routine
|
|---|
| 58 | *
|
|---|
| 59 | * Method.
|
|---|
| 60 | * Let S,C and T denote the sin, cos and tan respectively on
|
|---|
| 61 | * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
|---|
| 62 | * in [-pi/4 , +pi/4], and let n = k mod 4.
|
|---|
| 63 | * We have
|
|---|
| 64 | *
|
|---|
| 65 | * n sin(x) cos(x) tan(x)
|
|---|
| 66 | * ----------------------------------------------------------
|
|---|
| 67 | * 0 S C T
|
|---|
| 68 | * 1 C -S -1/T
|
|---|
| 69 | * 2 -S -C T
|
|---|
| 70 | * 3 -C S -1/T
|
|---|
| 71 | * ----------------------------------------------------------
|
|---|
| 72 | *
|
|---|
| 73 | * Special cases:
|
|---|
| 74 | * Let trig be any of sin, cos, or tan.
|
|---|
| 75 | * trig(+-INF) is NaN, with signals;
|
|---|
| 76 | * trig(NaN) is that NaN;
|
|---|
| 77 | *
|
|---|
| 78 | * Accuracy:
|
|---|
| 79 | * TRIG(x) returns trig(x) nearly rounded
|
|---|
| 80 | */
|
|---|
| 81 |
|
|---|
| 82 | #include "fdlibm.h"
|
|---|
| 83 |
|
|---|
| 84 | #ifndef _DOUBLE_IS_32BITS
|
|---|
| 85 |
|
|---|
| 86 | #ifdef __STDC__
|
|---|
| 87 | double tan(double x)
|
|---|
| 88 | #else
|
|---|
| 89 | double tan(x)
|
|---|
| 90 | double x;
|
|---|
| 91 | #endif
|
|---|
| 92 | {
|
|---|
| 93 | double y[2],z=0.0;
|
|---|
| 94 | int32_t n,ix;
|
|---|
| 95 |
|
|---|
| 96 | /* High word of x. */
|
|---|
| 97 | GET_HIGH_WORD(ix,x);
|
|---|
| 98 |
|
|---|
| 99 | /* |x| ~< pi/4 */
|
|---|
| 100 | ix &= 0x7fffffff;
|
|---|
| 101 | if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
|
|---|
| 102 |
|
|---|
| 103 | /* tan(Inf or NaN) is NaN */
|
|---|
| 104 | else if (ix>=0x7ff00000) return x-x; /* NaN */
|
|---|
| 105 |
|
|---|
| 106 | /* argument reduction needed */
|
|---|
| 107 | else {
|
|---|
| 108 | n = __ieee754_rem_pio2(x,y);
|
|---|
| 109 | return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
|
|---|
| 110 | -1 -- n odd */
|
|---|
| 111 | }
|
|---|
| 112 | }
|
|---|
| 113 |
|
|---|
| 114 | #endif /* _DOUBLE_IS_32BITS */
|
|---|