| 1 | /* java.lang.Math -- common mathematical functions, native allowed
|
|---|
| 2 | Copyright (C) 1998, 2001, 2002 Free Software Foundation, Inc.
|
|---|
| 3 |
|
|---|
| 4 | This file is part of GNU Classpath.
|
|---|
| 5 |
|
|---|
| 6 | GNU Classpath is free software; you can redistribute it and/or modify
|
|---|
| 7 | it under the terms of the GNU General Public License as published by
|
|---|
| 8 | the Free Software Foundation; either version 2, or (at your option)
|
|---|
| 9 | any later version.
|
|---|
| 10 |
|
|---|
| 11 | GNU Classpath is distributed in the hope that it will be useful, but
|
|---|
| 12 | WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|---|
| 14 | General Public License for more details.
|
|---|
| 15 |
|
|---|
| 16 | You should have received a copy of the GNU General Public License
|
|---|
| 17 | along with GNU Classpath; see the file COPYING. If not, write to the
|
|---|
| 18 | Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|---|
| 19 | 02111-1307 USA.
|
|---|
| 20 |
|
|---|
| 21 | Linking this library statically or dynamically with other modules is
|
|---|
| 22 | making a combined work based on this library. Thus, the terms and
|
|---|
| 23 | conditions of the GNU General Public License cover the whole
|
|---|
| 24 | combination.
|
|---|
| 25 |
|
|---|
| 26 | As a special exception, the copyright holders of this library give you
|
|---|
| 27 | permission to link this library with independent modules to produce an
|
|---|
| 28 | executable, regardless of the license terms of these independent
|
|---|
| 29 | modules, and to copy and distribute the resulting executable under
|
|---|
| 30 | terms of your choice, provided that you also meet, for each linked
|
|---|
| 31 | independent module, the terms and conditions of the license of that
|
|---|
| 32 | module. An independent module is a module which is not derived from
|
|---|
| 33 | or based on this library. If you modify this library, you may extend
|
|---|
| 34 | this exception to your version of the library, but you are not
|
|---|
| 35 | obligated to do so. If you do not wish to do so, delete this
|
|---|
| 36 | exception statement from your version. */
|
|---|
| 37 |
|
|---|
| 38 |
|
|---|
| 39 | package java.lang;
|
|---|
| 40 |
|
|---|
| 41 | import java.util.Random;
|
|---|
| 42 | import gnu.classpath.Configuration;
|
|---|
| 43 |
|
|---|
| 44 | /**
|
|---|
| 45 | * Helper class containing useful mathematical functions and constants.
|
|---|
| 46 | * <P>
|
|---|
| 47 | *
|
|---|
| 48 | * Note that angles are specified in radians. Conversion functions are
|
|---|
| 49 | * provided for your convenience.
|
|---|
| 50 | *
|
|---|
| 51 | * @author Paul Fisher
|
|---|
| 52 | * @author John Keiser
|
|---|
| 53 | * @author Eric Blake <[email protected]>
|
|---|
| 54 | * @since 1.0
|
|---|
| 55 | */
|
|---|
| 56 | public final class Math
|
|---|
| 57 | {
|
|---|
| 58 | /**
|
|---|
| 59 | * Math is non-instantiable
|
|---|
| 60 | */
|
|---|
| 61 | private Math()
|
|---|
| 62 | {
|
|---|
| 63 | }
|
|---|
| 64 |
|
|---|
| 65 | static
|
|---|
| 66 | {
|
|---|
| 67 | if (Configuration.INIT_LOAD_LIBRARY)
|
|---|
| 68 | {
|
|---|
| 69 | System.loadLibrary("javalang");
|
|---|
| 70 | }
|
|---|
| 71 | }
|
|---|
| 72 |
|
|---|
| 73 | /**
|
|---|
| 74 | * A random number generator, initialized on first use.
|
|---|
| 75 | */
|
|---|
| 76 | private static Random rand;
|
|---|
| 77 |
|
|---|
| 78 | /**
|
|---|
| 79 | * The most accurate approximation to the mathematical constant <em>e</em>:
|
|---|
| 80 | * <code>2.718281828459045</code>. Used in natural log and exp.
|
|---|
| 81 | *
|
|---|
| 82 | * @see #log(double)
|
|---|
| 83 | * @see #exp(double)
|
|---|
| 84 | */
|
|---|
| 85 | public static final double E = 2.718281828459045;
|
|---|
| 86 |
|
|---|
| 87 | /**
|
|---|
| 88 | * The most accurate approximation to the mathematical constant <em>pi</em>:
|
|---|
| 89 | * <code>3.141592653589793</code>. This is the ratio of a circle's diameter
|
|---|
| 90 | * to its circumference.
|
|---|
| 91 | */
|
|---|
| 92 | public static final double PI = 3.141592653589793;
|
|---|
| 93 |
|
|---|
| 94 | /**
|
|---|
| 95 | * Take the absolute value of the argument.
|
|---|
| 96 | * (Absolute value means make it positive.)
|
|---|
| 97 | * <P>
|
|---|
| 98 | *
|
|---|
| 99 | * Note that the the largest negative value (Integer.MIN_VALUE) cannot
|
|---|
| 100 | * be made positive. In this case, because of the rules of negation in
|
|---|
| 101 | * a computer, MIN_VALUE is what will be returned.
|
|---|
| 102 | * This is a <em>negative</em> value. You have been warned.
|
|---|
| 103 | *
|
|---|
| 104 | * @param i the number to take the absolute value of
|
|---|
| 105 | * @return the absolute value
|
|---|
| 106 | * @see Integer#MIN_VALUE
|
|---|
| 107 | */
|
|---|
| 108 | public static int abs(int i)
|
|---|
| 109 | {
|
|---|
| 110 | return (i < 0) ? -i : i;
|
|---|
| 111 | }
|
|---|
| 112 |
|
|---|
| 113 | /**
|
|---|
| 114 | * Take the absolute value of the argument.
|
|---|
| 115 | * (Absolute value means make it positive.)
|
|---|
| 116 | * <P>
|
|---|
| 117 | *
|
|---|
| 118 | * Note that the the largest negative value (Long.MIN_VALUE) cannot
|
|---|
| 119 | * be made positive. In this case, because of the rules of negation in
|
|---|
| 120 | * a computer, MIN_VALUE is what will be returned.
|
|---|
| 121 | * This is a <em>negative</em> value. You have been warned.
|
|---|
| 122 | *
|
|---|
| 123 | * @param l the number to take the absolute value of
|
|---|
| 124 | * @return the absolute value
|
|---|
| 125 | * @see Long#MIN_VALUE
|
|---|
| 126 | */
|
|---|
| 127 | public static long abs(long l)
|
|---|
| 128 | {
|
|---|
| 129 | return (l < 0) ? -l : l;
|
|---|
| 130 | }
|
|---|
| 131 |
|
|---|
| 132 | /**
|
|---|
| 133 | * Take the absolute value of the argument.
|
|---|
| 134 | * (Absolute value means make it positive.)
|
|---|
| 135 | * <P>
|
|---|
| 136 | *
|
|---|
| 137 | * This is equivalent, but faster than, calling
|
|---|
| 138 | * <code>Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))</code>.
|
|---|
| 139 | *
|
|---|
| 140 | * @param f the number to take the absolute value of
|
|---|
| 141 | * @return the absolute value
|
|---|
| 142 | */
|
|---|
| 143 | public static float abs(float f)
|
|---|
| 144 | {
|
|---|
| 145 | return (f <= 0) ? 0 - f : f;
|
|---|
| 146 | }
|
|---|
| 147 |
|
|---|
| 148 | /**
|
|---|
| 149 | * Take the absolute value of the argument.
|
|---|
| 150 | * (Absolute value means make it positive.)
|
|---|
| 151 | *
|
|---|
| 152 | * This is equivalent, but faster than, calling
|
|---|
| 153 | * <code>Double.longBitsToDouble(Double.doubleToLongBits(a)
|
|---|
| 154 | * << 1) >>> 1);</code>.
|
|---|
| 155 | *
|
|---|
| 156 | * @param d the number to take the absolute value of
|
|---|
| 157 | * @return the absolute value
|
|---|
| 158 | */
|
|---|
| 159 | public static double abs(double d)
|
|---|
| 160 | {
|
|---|
| 161 | return (d <= 0) ? 0 - d : d;
|
|---|
| 162 | }
|
|---|
| 163 |
|
|---|
| 164 | /**
|
|---|
| 165 | * Return whichever argument is smaller.
|
|---|
| 166 | *
|
|---|
| 167 | * @param a the first number
|
|---|
| 168 | * @param b a second number
|
|---|
| 169 | * @return the smaller of the two numbers
|
|---|
| 170 | */
|
|---|
| 171 | public static int min(int a, int b)
|
|---|
| 172 | {
|
|---|
| 173 | return (a < b) ? a : b;
|
|---|
| 174 | }
|
|---|
| 175 |
|
|---|
| 176 | /**
|
|---|
| 177 | * Return whichever argument is smaller.
|
|---|
| 178 | *
|
|---|
| 179 | * @param a the first number
|
|---|
| 180 | * @param b a second number
|
|---|
| 181 | * @return the smaller of the two numbers
|
|---|
| 182 | */
|
|---|
| 183 | public static long min(long a, long b)
|
|---|
| 184 | {
|
|---|
| 185 | return (a < b) ? a : b;
|
|---|
| 186 | }
|
|---|
| 187 |
|
|---|
| 188 | /**
|
|---|
| 189 | * Return whichever argument is smaller. If either argument is NaN, the
|
|---|
| 190 | * result is NaN, and when comparing 0 and -0, -0 is always smaller.
|
|---|
| 191 | *
|
|---|
| 192 | * @param a the first number
|
|---|
| 193 | * @param b a second number
|
|---|
| 194 | * @return the smaller of the two numbers
|
|---|
| 195 | */
|
|---|
| 196 | public static float min(float a, float b)
|
|---|
| 197 | {
|
|---|
| 198 | // this check for NaN, from JLS 15.21.1, saves a method call
|
|---|
| 199 | if (a != a)
|
|---|
| 200 | return a;
|
|---|
| 201 | // no need to check if b is NaN; < will work correctly
|
|---|
| 202 | // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
|
|---|
| 203 | if (a == 0 && b == 0)
|
|---|
| 204 | return -(-a - b);
|
|---|
| 205 | return (a < b) ? a : b;
|
|---|
| 206 | }
|
|---|
| 207 |
|
|---|
| 208 | /**
|
|---|
| 209 | * Return whichever argument is smaller. If either argument is NaN, the
|
|---|
| 210 | * result is NaN, and when comparing 0 and -0, -0 is always smaller.
|
|---|
| 211 | *
|
|---|
| 212 | * @param a the first number
|
|---|
| 213 | * @param b a second number
|
|---|
| 214 | * @return the smaller of the two numbers
|
|---|
| 215 | */
|
|---|
| 216 | public static double min(double a, double b)
|
|---|
| 217 | {
|
|---|
| 218 | // this check for NaN, from JLS 15.21.1, saves a method call
|
|---|
| 219 | if (a != a)
|
|---|
| 220 | return a;
|
|---|
| 221 | // no need to check if b is NaN; < will work correctly
|
|---|
| 222 | // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
|
|---|
| 223 | if (a == 0 && b == 0)
|
|---|
| 224 | return -(-a - b);
|
|---|
| 225 | return (a < b) ? a : b;
|
|---|
| 226 | }
|
|---|
| 227 |
|
|---|
| 228 | /**
|
|---|
| 229 | * Return whichever argument is larger.
|
|---|
| 230 | *
|
|---|
| 231 | * @param a the first number
|
|---|
| 232 | * @param b a second number
|
|---|
| 233 | * @return the larger of the two numbers
|
|---|
| 234 | */
|
|---|
| 235 | public static int max(int a, int b)
|
|---|
| 236 | {
|
|---|
| 237 | return (a > b) ? a : b;
|
|---|
| 238 | }
|
|---|
| 239 |
|
|---|
| 240 | /**
|
|---|
| 241 | * Return whichever argument is larger.
|
|---|
| 242 | *
|
|---|
| 243 | * @param a the first number
|
|---|
| 244 | * @param b a second number
|
|---|
| 245 | * @return the larger of the two numbers
|
|---|
| 246 | */
|
|---|
| 247 | public static long max(long a, long b)
|
|---|
| 248 | {
|
|---|
| 249 | return (a > b) ? a : b;
|
|---|
| 250 | }
|
|---|
| 251 |
|
|---|
| 252 | /**
|
|---|
| 253 | * Return whichever argument is larger. If either argument is NaN, the
|
|---|
| 254 | * result is NaN, and when comparing 0 and -0, 0 is always larger.
|
|---|
| 255 | *
|
|---|
| 256 | * @param a the first number
|
|---|
| 257 | * @param b a second number
|
|---|
| 258 | * @return the larger of the two numbers
|
|---|
| 259 | */
|
|---|
| 260 | public static float max(float a, float b)
|
|---|
| 261 | {
|
|---|
| 262 | // this check for NaN, from JLS 15.21.1, saves a method call
|
|---|
| 263 | if (a != a)
|
|---|
| 264 | return a;
|
|---|
| 265 | // no need to check if b is NaN; > will work correctly
|
|---|
| 266 | // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
|
|---|
| 267 | if (a == 0 && b == 0)
|
|---|
| 268 | return a - -b;
|
|---|
| 269 | return (a > b) ? a : b;
|
|---|
| 270 | }
|
|---|
| 271 |
|
|---|
| 272 | /**
|
|---|
| 273 | * Return whichever argument is larger. If either argument is NaN, the
|
|---|
| 274 | * result is NaN, and when comparing 0 and -0, 0 is always larger.
|
|---|
| 275 | *
|
|---|
| 276 | * @param a the first number
|
|---|
| 277 | * @param b a second number
|
|---|
| 278 | * @return the larger of the two numbers
|
|---|
| 279 | */
|
|---|
| 280 | public static double max(double a, double b)
|
|---|
| 281 | {
|
|---|
| 282 | // this check for NaN, from JLS 15.21.1, saves a method call
|
|---|
| 283 | if (a != a)
|
|---|
| 284 | return a;
|
|---|
| 285 | // no need to check if b is NaN; > will work correctly
|
|---|
| 286 | // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
|
|---|
| 287 | if (a == 0 && b == 0)
|
|---|
| 288 | return a - -b;
|
|---|
| 289 | return (a > b) ? a : b;
|
|---|
| 290 | }
|
|---|
| 291 |
|
|---|
| 292 | /**
|
|---|
| 293 | * The trigonometric function <em>sin</em>. The sine of NaN or infinity is
|
|---|
| 294 | * NaN, and the sine of 0 retains its sign. This is accurate within 1 ulp,
|
|---|
| 295 | * and is semi-monotonic.
|
|---|
| 296 | *
|
|---|
| 297 | * @param a the angle (in radians)
|
|---|
| 298 | * @return sin(a)
|
|---|
| 299 | */
|
|---|
| 300 | public native static double sin(double a);
|
|---|
| 301 |
|
|---|
| 302 | /**
|
|---|
| 303 | * The trigonometric function <em>cos</em>. The cosine of NaN or infinity is
|
|---|
| 304 | * NaN. This is accurate within 1 ulp, and is semi-monotonic.
|
|---|
| 305 | *
|
|---|
| 306 | * @param a the angle (in radians)
|
|---|
| 307 | * @return cos(a)
|
|---|
| 308 | */
|
|---|
| 309 | public native static double cos(double a);
|
|---|
| 310 |
|
|---|
| 311 | /**
|
|---|
| 312 | * The trigonometric function <em>tan</em>. The tangent of NaN or infinity
|
|---|
| 313 | * is NaN, and the tangent of 0 retains its sign. This is accurate within 1
|
|---|
| 314 | * ulp, and is semi-monotonic.
|
|---|
| 315 | *
|
|---|
| 316 | * @param a the angle (in radians)
|
|---|
| 317 | * @return tan(a)
|
|---|
| 318 | */
|
|---|
| 319 | public native static double tan(double a);
|
|---|
| 320 |
|
|---|
| 321 | /**
|
|---|
| 322 | * The trigonometric function <em>arcsin</em>. The range of angles returned
|
|---|
| 323 | * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN or
|
|---|
| 324 | * its absolute value is beyond 1, the result is NaN; and the arcsine of
|
|---|
| 325 | * 0 retains its sign. This is accurate within 1 ulp, and is semi-monotonic.
|
|---|
| 326 | *
|
|---|
| 327 | * @param a the sin to turn back into an angle
|
|---|
| 328 | * @return arcsin(a)
|
|---|
| 329 | */
|
|---|
| 330 | public native static double asin(double a);
|
|---|
| 331 |
|
|---|
| 332 | /**
|
|---|
| 333 | * The trigonometric function <em>arccos</em>. The range of angles returned
|
|---|
| 334 | * is 0 to pi radians (0 to 180 degrees). If the argument is NaN or
|
|---|
| 335 | * its absolute value is beyond 1, the result is NaN. This is accurate
|
|---|
| 336 | * within 1 ulp, and is semi-monotonic.
|
|---|
| 337 | *
|
|---|
| 338 | * @param a the cos to turn back into an angle
|
|---|
| 339 | * @return arccos(a)
|
|---|
| 340 | */
|
|---|
| 341 | public native static double acos(double a);
|
|---|
| 342 |
|
|---|
| 343 | /**
|
|---|
| 344 | * The trigonometric function <em>arcsin</em>. The range of angles returned
|
|---|
| 345 | * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN, the
|
|---|
| 346 | * result is NaN; and the arctangent of 0 retains its sign. This is accurate
|
|---|
| 347 | * within 1 ulp, and is semi-monotonic.
|
|---|
| 348 | *
|
|---|
| 349 | * @param a the tan to turn back into an angle
|
|---|
| 350 | * @return arcsin(a)
|
|---|
| 351 | * @see #atan2(double, double)
|
|---|
| 352 | */
|
|---|
| 353 | public native static double atan(double a);
|
|---|
| 354 |
|
|---|
| 355 | /**
|
|---|
| 356 | * A special version of the trigonometric function <em>arctan</em>, for
|
|---|
| 357 | * converting rectangular coordinates <em>(x, y)</em> to polar
|
|---|
| 358 | * <em>(r, theta)</em>. This computes the arctangent of x/y in the range
|
|---|
| 359 | * of -pi to pi radians (-180 to 180 degrees). Special cases:<ul>
|
|---|
| 360 | * <li>If either argument is NaN, the result is NaN.</li>
|
|---|
| 361 | * <li>If the first argument is positive zero and the second argument is
|
|---|
| 362 | * positive, or the first argument is positive and finite and the second
|
|---|
| 363 | * argument is positive infinity, then the result is positive zero.</li>
|
|---|
| 364 | * <li>If the first argument is negative zero and the second argument is
|
|---|
| 365 | * positive, or the first argument is negative and finite and the second
|
|---|
| 366 | * argument is positive infinity, then the result is negative zero.</li>
|
|---|
| 367 | * <li>If the first argument is positive zero and the second argument is
|
|---|
| 368 | * negative, or the first argument is positive and finite and the second
|
|---|
| 369 | * argument is negative infinity, then the result is the double value
|
|---|
| 370 | * closest to pi.</li>
|
|---|
| 371 | * <li>If the first argument is negative zero and the second argument is
|
|---|
| 372 | * negative, or the first argument is negative and finite and the second
|
|---|
| 373 | * argument is negative infinity, then the result is the double value
|
|---|
| 374 | * closest to -pi.</li>
|
|---|
| 375 | * <li>If the first argument is positive and the second argument is
|
|---|
| 376 | * positive zero or negative zero, or the first argument is positive
|
|---|
| 377 | * infinity and the second argument is finite, then the result is the
|
|---|
| 378 | * double value closest to pi/2.</li>
|
|---|
| 379 | * <li>If the first argument is negative and the second argument is
|
|---|
| 380 | * positive zero or negative zero, or the first argument is negative
|
|---|
| 381 | * infinity and the second argument is finite, then the result is the
|
|---|
| 382 | * double value closest to -pi/2.</li>
|
|---|
| 383 | * <li>If both arguments are positive infinity, then the result is the
|
|---|
| 384 | * double value closest to pi/4.</li>
|
|---|
| 385 | * <li>If the first argument is positive infinity and the second argument
|
|---|
| 386 | * is negative infinity, then the result is the double value closest to
|
|---|
| 387 | * 3*pi/4.</li>
|
|---|
| 388 | * <li>If the first argument is negative infinity and the second argument
|
|---|
| 389 | * is positive infinity, then the result is the double value closest to
|
|---|
| 390 | * -pi/4.</li>
|
|---|
| 391 | * <li>If both arguments are negative infinity, then the result is the
|
|---|
| 392 | * double value closest to -3*pi/4.</li>
|
|---|
| 393 | *
|
|---|
| 394 | * </ul><p>This is accurate within 2 ulps, and is semi-monotonic. To get r,
|
|---|
| 395 | * use sqrt(x*x+y*y).
|
|---|
| 396 | *
|
|---|
| 397 | * @param y the y position
|
|---|
| 398 | * @param x the x position
|
|---|
| 399 | * @return <em>theta</em> in the conversion of (x, y) to (r, theta)
|
|---|
| 400 | * @see #atan(double)
|
|---|
| 401 | */
|
|---|
| 402 | public native static double atan2(double y, double x);
|
|---|
| 403 |
|
|---|
| 404 | /**
|
|---|
| 405 | * Take <em>e</em><sup>a</sup>. The opposite of <code>log()</code>. If the
|
|---|
| 406 | * argument is NaN, the result is NaN; if the argument is positive infinity,
|
|---|
| 407 | * the result is positive infinity; and if the argument is negative
|
|---|
| 408 | * infinity, the result is positive zero. This is accurate within 1 ulp,
|
|---|
| 409 | * and is semi-monotonic.
|
|---|
| 410 | *
|
|---|
| 411 | * @param a the number to raise to the power
|
|---|
| 412 | * @return the number raised to the power of <em>e</em>
|
|---|
| 413 | * @see #log(double)
|
|---|
| 414 | * @see #pow(double, double)
|
|---|
| 415 | */
|
|---|
| 416 | public native static double exp(double a);
|
|---|
| 417 |
|
|---|
| 418 | /**
|
|---|
| 419 | * Take ln(a) (the natural log). The opposite of <code>exp()</code>. If the
|
|---|
| 420 | * argument is NaN or negative, the result is NaN; if the argument is
|
|---|
| 421 | * positive infinity, the result is positive infinity; and if the argument
|
|---|
| 422 | * is either zero, the result is negative infinity. This is accurate within
|
|---|
| 423 | * 1 ulp, and is semi-monotonic.
|
|---|
| 424 | *
|
|---|
| 425 | * <p>Note that the way to get log<sub>b</sub>(a) is to do this:
|
|---|
| 426 | * <code>ln(a) / ln(b)</code>.
|
|---|
| 427 | *
|
|---|
| 428 | * @param a the number to take the natural log of
|
|---|
| 429 | * @return the natural log of <code>a</code>
|
|---|
| 430 | * @see #exp(double)
|
|---|
| 431 | */
|
|---|
| 432 | public native static double log(double a);
|
|---|
| 433 |
|
|---|
| 434 | /**
|
|---|
| 435 | * Take a square root. If the argument is NaN or negative, the result is
|
|---|
| 436 | * NaN; if the argument is positive infinity, the result is positive
|
|---|
| 437 | * infinity; and if the result is either zero, the result is the same.
|
|---|
| 438 | * This is accurate within the limits of doubles.
|
|---|
| 439 | *
|
|---|
| 440 | * <p>For other roots, use pow(a, 1 / rootNumber).
|
|---|
| 441 | *
|
|---|
| 442 | * @param a the numeric argument
|
|---|
| 443 | * @return the square root of the argument
|
|---|
| 444 | * @see #pow(double, double)
|
|---|
| 445 | */
|
|---|
| 446 | public native static double sqrt(double a);
|
|---|
| 447 |
|
|---|
| 448 | /**
|
|---|
| 449 | * Raise a number to a power. Special cases:<ul>
|
|---|
| 450 | * <li>If the second argument is positive or negative zero, then the result
|
|---|
| 451 | * is 1.0.</li>
|
|---|
| 452 | * <li>If the second argument is 1.0, then the result is the same as the
|
|---|
| 453 | * first argument.</li>
|
|---|
| 454 | * <li>If the second argument is NaN, then the result is NaN.</li>
|
|---|
| 455 | * <li>If the first argument is NaN and the second argument is nonzero,
|
|---|
| 456 | * then the result is NaN.</li>
|
|---|
| 457 | * <li>If the absolute value of the first argument is greater than 1 and
|
|---|
| 458 | * the second argument is positive infinity, or the absolute value of the
|
|---|
| 459 | * first argument is less than 1 and the second argument is negative
|
|---|
| 460 | * infinity, then the result is positive infinity.</li>
|
|---|
| 461 | * <li>If the absolute value of the first argument is greater than 1 and
|
|---|
| 462 | * the second argument is negative infinity, or the absolute value of the
|
|---|
| 463 | * first argument is less than 1 and the second argument is positive
|
|---|
| 464 | * infinity, then the result is positive zero.</li>
|
|---|
| 465 | * <li>If the absolute value of the first argument equals 1 and the second
|
|---|
| 466 | * argument is infinite, then the result is NaN.</li>
|
|---|
| 467 | * <li>If the first argument is positive zero and the second argument is
|
|---|
| 468 | * greater than zero, or the first argument is positive infinity and the
|
|---|
| 469 | * second argument is less than zero, then the result is positive zero.</li>
|
|---|
| 470 | * <li>If the first argument is positive zero and the second argument is
|
|---|
| 471 | * less than zero, or the first argument is positive infinity and the
|
|---|
| 472 | * second argument is greater than zero, then the result is positive
|
|---|
| 473 | * infinity.</li>
|
|---|
| 474 | * <li>If the first argument is negative zero and the second argument is
|
|---|
| 475 | * greater than zero but not a finite odd integer, or the first argument is
|
|---|
| 476 | * negative infinity and the second argument is less than zero but not a
|
|---|
| 477 | * finite odd integer, then the result is positive zero.</li>
|
|---|
| 478 | * <li>If the first argument is negative zero and the second argument is a
|
|---|
| 479 | * positive finite odd integer, or the first argument is negative infinity
|
|---|
| 480 | * and the second argument is a negative finite odd integer, then the result
|
|---|
| 481 | * is negative zero.</li>
|
|---|
| 482 | * <li>If the first argument is negative zero and the second argument is
|
|---|
| 483 | * less than zero but not a finite odd integer, or the first argument is
|
|---|
| 484 | * negative infinity and the second argument is greater than zero but not a
|
|---|
| 485 | * finite odd integer, then the result is positive infinity.</li>
|
|---|
| 486 | * <li>If the first argument is negative zero and the second argument is a
|
|---|
| 487 | * negative finite odd integer, or the first argument is negative infinity
|
|---|
| 488 | * and the second argument is a positive finite odd integer, then the result
|
|---|
| 489 | * is negative infinity.</li>
|
|---|
| 490 | * <li>If the first argument is less than zero and the second argument is a
|
|---|
| 491 | * finite even integer, then the result is equal to the result of raising
|
|---|
| 492 | * the absolute value of the first argument to the power of the second
|
|---|
| 493 | * argument.</li>
|
|---|
| 494 | * <li>If the first argument is less than zero and the second argument is a
|
|---|
| 495 | * finite odd integer, then the result is equal to the negative of the
|
|---|
| 496 | * result of raising the absolute value of the first argument to the power
|
|---|
| 497 | * of the second argument.</li>
|
|---|
| 498 | * <li>If the first argument is finite and less than zero and the second
|
|---|
| 499 | * argument is finite and not an integer, then the result is NaN.</li>
|
|---|
| 500 | * <li>If both arguments are integers, then the result is exactly equal to
|
|---|
| 501 | * the mathematical result of raising the first argument to the power of
|
|---|
| 502 | * the second argument if that result can in fact be represented exactly as
|
|---|
| 503 | * a double value.</li>
|
|---|
| 504 | *
|
|---|
| 505 | * </ul><p>(In the foregoing descriptions, a floating-point value is
|
|---|
| 506 | * considered to be an integer if and only if it is a fixed point of the
|
|---|
| 507 | * method {@link #ceil(double)} or, equivalently, a fixed point of the
|
|---|
| 508 | * method {@link #floor(double)}. A value is a fixed point of a one-argument
|
|---|
| 509 | * method if and only if the result of applying the method to the value is
|
|---|
| 510 | * equal to the value.) This is accurate within 1 ulp, and is semi-monotonic.
|
|---|
| 511 | *
|
|---|
| 512 | * @param a the number to raise
|
|---|
| 513 | * @param b the power to raise it to
|
|---|
| 514 | * @return a<sup>b</sup>
|
|---|
| 515 | */
|
|---|
| 516 | public native static double pow(double a, double b);
|
|---|
| 517 |
|
|---|
| 518 | /**
|
|---|
| 519 | * Get the IEEE 754 floating point remainder on two numbers. This is the
|
|---|
| 520 | * value of <code>x - y * <em>n</em></code>, where <em>n</em> is the closest
|
|---|
| 521 | * double to <code>x / y</code> (ties go to the even n); for a zero
|
|---|
| 522 | * remainder, the sign is that of <code>x</code>. If either argument is NaN,
|
|---|
| 523 | * the first argument is infinite, or the second argument is zero, the result
|
|---|
| 524 | * is NaN; if x is finite but y is infinte, the result is x. This is
|
|---|
| 525 | * accurate within the limits of doubles.
|
|---|
| 526 | *
|
|---|
| 527 | * @param x the dividend (the top half)
|
|---|
| 528 | * @param y the divisor (the bottom half)
|
|---|
| 529 | * @return the IEEE 754-defined floating point remainder of x/y
|
|---|
| 530 | * @see #rint(double)
|
|---|
| 531 | */
|
|---|
| 532 | public native static double IEEEremainder(double x, double y);
|
|---|
| 533 |
|
|---|
| 534 | /**
|
|---|
| 535 | * Take the nearest integer that is that is greater than or equal to the
|
|---|
| 536 | * argument. If the argument is NaN, infinite, or zero, the result is the
|
|---|
| 537 | * same; if the argument is between -1 and 0, the result is negative zero.
|
|---|
| 538 | * Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
|
|---|
| 539 | *
|
|---|
| 540 | * @param a the value to act upon
|
|---|
| 541 | * @return the nearest integer >= <code>a</code>
|
|---|
| 542 | */
|
|---|
| 543 | public native static double ceil(double a);
|
|---|
| 544 |
|
|---|
| 545 | /**
|
|---|
| 546 | * Take the nearest integer that is that is less than or equal to the
|
|---|
| 547 | * argument. If the argument is NaN, infinite, or zero, the result is the
|
|---|
| 548 | * same. Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
|
|---|
| 549 | *
|
|---|
| 550 | * @param a the value to act upon
|
|---|
| 551 | * @return the nearest integer <= <code>a</code>
|
|---|
| 552 | */
|
|---|
| 553 | public native static double floor(double a);
|
|---|
| 554 |
|
|---|
| 555 | /**
|
|---|
| 556 | * Take the nearest integer to the argument. If it is exactly between
|
|---|
| 557 | * two integers, the even integer is taken. If the argument is NaN,
|
|---|
| 558 | * infinite, or zero, the result is the same.
|
|---|
| 559 | *
|
|---|
| 560 | * @param a the value to act upon
|
|---|
| 561 | * @return the nearest integer to <code>a</code>
|
|---|
| 562 | */
|
|---|
| 563 | public native static double rint(double a);
|
|---|
| 564 |
|
|---|
| 565 | /**
|
|---|
| 566 | * Take the nearest integer to the argument. This is equivalent to
|
|---|
| 567 | * <code>(int) Math.floor(a + 0.5f). If the argument is NaN, the result
|
|---|
| 568 | * is 0; otherwise if the argument is outside the range of int, the result
|
|---|
| 569 | * will be Integer.MIN_VALUE or Integer.MAX_VALUE, as appropriate.
|
|---|
| 570 | *
|
|---|
| 571 | * @param a the argument to round
|
|---|
| 572 | * @return the nearest integer to the argument
|
|---|
| 573 | * @see Integer#MIN_VALUE
|
|---|
| 574 | * @see Integer#MAX_VALUE
|
|---|
| 575 | */
|
|---|
| 576 | public static int round(float a)
|
|---|
| 577 | {
|
|---|
| 578 | return (int) floor(a + 0.5f);
|
|---|
| 579 | }
|
|---|
| 580 |
|
|---|
| 581 | /**
|
|---|
| 582 | * Take the nearest long to the argument. This is equivalent to
|
|---|
| 583 | * <code>(long) Math.floor(a + 0.5)</code>. If the argument is NaN, the
|
|---|
| 584 | * result is 0; otherwise if the argument is outside the range of long, the
|
|---|
| 585 | * result will be Long.MIN_VALUE or Long.MAX_VALUE, as appropriate.
|
|---|
| 586 | *
|
|---|
| 587 | * @param a the argument to round
|
|---|
| 588 | * @return the nearest long to the argument
|
|---|
| 589 | * @see Long#MIN_VALUE
|
|---|
| 590 | * @see Long#MAX_VALUE
|
|---|
| 591 | */
|
|---|
| 592 | public static long round(double a)
|
|---|
| 593 | {
|
|---|
| 594 | return (long) floor(a + 0.5d);
|
|---|
| 595 | }
|
|---|
| 596 |
|
|---|
| 597 | /**
|
|---|
| 598 | * Get a random number. This behaves like Random.nextDouble(), seeded by
|
|---|
| 599 | * System.currentTimeMillis() when first called. In other words, the number
|
|---|
| 600 | * is from a pseudorandom sequence, and lies in the range [+0.0, 1.0).
|
|---|
| 601 | * This random sequence is only used by this method, and is threadsafe,
|
|---|
| 602 | * although you may want your own random number generator if it is shared
|
|---|
| 603 | * among threads.
|
|---|
| 604 | *
|
|---|
| 605 | * @return a random number
|
|---|
| 606 | * @see Random#nextDouble()
|
|---|
| 607 | * @see System#currentTimeMillis()
|
|---|
| 608 | */
|
|---|
| 609 | public static synchronized double random()
|
|---|
| 610 | {
|
|---|
| 611 | if (rand == null)
|
|---|
| 612 | rand = new Random();
|
|---|
| 613 | return rand.nextDouble();
|
|---|
| 614 | }
|
|---|
| 615 |
|
|---|
| 616 | /**
|
|---|
| 617 | * Convert from degrees to radians. The formula for this is
|
|---|
| 618 | * radians = degrees * (pi/180); however it is not always exact given the
|
|---|
| 619 | * limitations of floating point numbers.
|
|---|
| 620 | *
|
|---|
| 621 | * @param degrees an angle in degrees
|
|---|
| 622 | * @return the angle in radians
|
|---|
| 623 | * @since 1.2
|
|---|
| 624 | */
|
|---|
| 625 | public static double toRadians(double degrees)
|
|---|
| 626 | {
|
|---|
| 627 | return degrees * (PI / 180);
|
|---|
| 628 | }
|
|---|
| 629 |
|
|---|
| 630 | /**
|
|---|
| 631 | * Convert from radians to degrees. The formula for this is
|
|---|
| 632 | * degrees = radians * (180/pi); however it is not always exact given the
|
|---|
| 633 | * limitations of floating point numbers.
|
|---|
| 634 | *
|
|---|
| 635 | * @param rads an angle in radians
|
|---|
| 636 | * @return the angle in degrees
|
|---|
| 637 | * @since 1.2
|
|---|
| 638 | */
|
|---|
| 639 | public static double toDegrees(double rads)
|
|---|
| 640 | {
|
|---|
| 641 | return rads * (180 / PI);
|
|---|
| 642 | }
|
|---|
| 643 | }
|
|---|