| 1 | /* Polygon.java -- class representing a polygon
|
|---|
| 2 | Copyright (C) 1999, 2002 Free Software Foundation, Inc.
|
|---|
| 3 |
|
|---|
| 4 | This file is part of GNU Classpath.
|
|---|
| 5 |
|
|---|
| 6 | GNU Classpath is free software; you can redistribute it and/or modify
|
|---|
| 7 | it under the terms of the GNU General Public License as published by
|
|---|
| 8 | the Free Software Foundation; either version 2, or (at your option)
|
|---|
| 9 | any later version.
|
|---|
| 10 |
|
|---|
| 11 | GNU Classpath is distributed in the hope that it will be useful, but
|
|---|
| 12 | WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|---|
| 14 | General Public License for more details.
|
|---|
| 15 |
|
|---|
| 16 | You should have received a copy of the GNU General Public License
|
|---|
| 17 | along with GNU Classpath; see the file COPYING. If not, write to the
|
|---|
| 18 | Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|---|
| 19 | 02111-1307 USA.
|
|---|
| 20 |
|
|---|
| 21 | Linking this library statically or dynamically with other modules is
|
|---|
| 22 | making a combined work based on this library. Thus, the terms and
|
|---|
| 23 | conditions of the GNU General Public License cover the whole
|
|---|
| 24 | combination.
|
|---|
| 25 |
|
|---|
| 26 | As a special exception, the copyright holders of this library give you
|
|---|
| 27 | permission to link this library with independent modules to produce an
|
|---|
| 28 | executable, regardless of the license terms of these independent
|
|---|
| 29 | modules, and to copy and distribute the resulting executable under
|
|---|
| 30 | terms of your choice, provided that you also meet, for each linked
|
|---|
| 31 | independent module, the terms and conditions of the license of that
|
|---|
| 32 | module. An independent module is a module which is not derived from
|
|---|
| 33 | or based on this library. If you modify this library, you may extend
|
|---|
| 34 | this exception to your version of the library, but you are not
|
|---|
| 35 | obligated to do so. If you do not wish to do so, delete this
|
|---|
| 36 | exception statement from your version. */
|
|---|
| 37 |
|
|---|
| 38 |
|
|---|
| 39 | package java.awt;
|
|---|
| 40 |
|
|---|
| 41 | import java.awt.geom.AffineTransform;
|
|---|
| 42 | import java.awt.geom.PathIterator;
|
|---|
| 43 | import java.awt.geom.Point2D;
|
|---|
| 44 | import java.awt.geom.Rectangle2D;
|
|---|
| 45 | import java.io.Serializable;
|
|---|
| 46 |
|
|---|
| 47 | /**
|
|---|
| 48 | * This class represents a polygon, a closed, two-dimensional region in a
|
|---|
| 49 | * coordinate space. The region is bounded by an arbitrary number of line
|
|---|
| 50 | * segments, between (x,y) coordinate vertices. The polygon has even-odd
|
|---|
| 51 | * winding, meaning that a point is inside the shape if it crosses the
|
|---|
| 52 | * boundary an odd number of times on the way to infinity.
|
|---|
| 53 | *
|
|---|
| 54 | * <p>There are some public fields; if you mess with them in an inconsistent
|
|---|
| 55 | * manner, it is your own fault when you get NullPointerException,
|
|---|
| 56 | * ArrayIndexOutOfBoundsException, or invalid results. Also, this class is
|
|---|
| 57 | * not threadsafe.
|
|---|
| 58 | *
|
|---|
| 59 | * @author Aaron M. Renn <[email protected]>
|
|---|
| 60 | * @author Eric Blake <[email protected]>
|
|---|
| 61 | * @since 1.0
|
|---|
| 62 | * @status updated to 1.4
|
|---|
| 63 | */
|
|---|
| 64 | public class Polygon implements Shape, Serializable
|
|---|
| 65 | {
|
|---|
| 66 | /**
|
|---|
| 67 | * Compatible with JDK 1.0+.
|
|---|
| 68 | */
|
|---|
| 69 | private static final long serialVersionUID = -6460061437900069969L;
|
|---|
| 70 |
|
|---|
| 71 | /**
|
|---|
| 72 | * This total number of endpoints.
|
|---|
| 73 | *
|
|---|
| 74 | * @serial the number of endpoints, possibly less than the array sizes
|
|---|
| 75 | */
|
|---|
| 76 | public int npoints;
|
|---|
| 77 |
|
|---|
| 78 | /**
|
|---|
| 79 | * The array of X coordinates of endpoints. This should not be null.
|
|---|
| 80 | *
|
|---|
| 81 | * @see #addPoint(int, int)
|
|---|
| 82 | * @serial the x coordinates
|
|---|
| 83 | */
|
|---|
| 84 | public int[] xpoints;
|
|---|
| 85 |
|
|---|
| 86 | /**
|
|---|
| 87 | * The array of Y coordinates of endpoints. This should not be null.
|
|---|
| 88 | *
|
|---|
| 89 | * @see #addPoint(int, int)
|
|---|
| 90 | * @serial the y coordinates
|
|---|
| 91 | */
|
|---|
| 92 | public int[] ypoints;
|
|---|
| 93 |
|
|---|
| 94 | /**
|
|---|
| 95 | * The bounding box of this polygon. This is lazily created and cached, so
|
|---|
| 96 | * it must be invalidated after changing points.
|
|---|
| 97 | *
|
|---|
| 98 | * @see #getBounds()
|
|---|
| 99 | * @serial the bounding box, or null
|
|---|
| 100 | */
|
|---|
| 101 | protected Rectangle bounds;
|
|---|
| 102 |
|
|---|
| 103 | /**
|
|---|
| 104 | * Cached flattened version - condense points and parallel lines, so the
|
|---|
| 105 | * result has area if there are >= 3 condensed vertices. flat[0] is the
|
|---|
| 106 | * number of condensed points, and (flat[odd], flat[odd+1]) form the
|
|---|
| 107 | * condensed points.
|
|---|
| 108 | *
|
|---|
| 109 | * @see #condense()
|
|---|
| 110 | * @see #contains(double, double)
|
|---|
| 111 | * @see #contains(double, double, double, double)
|
|---|
| 112 | */
|
|---|
| 113 | private transient int[] condensed;
|
|---|
| 114 |
|
|---|
| 115 | /**
|
|---|
| 116 | * Initializes an empty polygon.
|
|---|
| 117 | */
|
|---|
| 118 | public Polygon()
|
|---|
| 119 | {
|
|---|
| 120 | // Leave room for growth.
|
|---|
| 121 | xpoints = new int[4];
|
|---|
| 122 | ypoints = new int[4];
|
|---|
| 123 | }
|
|---|
| 124 |
|
|---|
| 125 | /**
|
|---|
| 126 | * Create a new polygon with the specified endpoints. The arrays are copied,
|
|---|
| 127 | * so that future modifications to the parameters do not affect the polygon.
|
|---|
| 128 | *
|
|---|
| 129 | * @param xpoints the array of X coordinates for this polygon
|
|---|
| 130 | * @param ypoints the array of Y coordinates for this polygon
|
|---|
| 131 | * @param npoints the total number of endpoints in this polygon
|
|---|
| 132 | * @throws NegativeArraySizeException if npoints is negative
|
|---|
| 133 | * @throws IndexOutOfBoundsException if npoints exceeds either array
|
|---|
| 134 | * @throws NullPointerException if xpoints or ypoints is null
|
|---|
| 135 | */
|
|---|
| 136 | public Polygon(int[] xpoints, int[] ypoints, int npoints)
|
|---|
| 137 | {
|
|---|
| 138 | this.xpoints = new int[npoints];
|
|---|
| 139 | this.ypoints = new int[npoints];
|
|---|
| 140 | System.arraycopy(xpoints, 0, this.xpoints, 0, npoints);
|
|---|
| 141 | System.arraycopy(ypoints, 0, this.ypoints, 0, npoints);
|
|---|
| 142 | this.npoints = npoints;
|
|---|
| 143 | }
|
|---|
| 144 |
|
|---|
| 145 | /**
|
|---|
| 146 | * Reset the polygon to be empty. The arrays are left alone, to avoid object
|
|---|
| 147 | * allocation, but the number of points is set to 0, and all cached data
|
|---|
| 148 | * is discarded. If you are discarding a huge number of points, it may be
|
|---|
| 149 | * more efficient to just create a new Polygon.
|
|---|
| 150 | *
|
|---|
| 151 | * @see #invalidate()
|
|---|
| 152 | * @since 1.4
|
|---|
| 153 | */
|
|---|
| 154 | public void reset()
|
|---|
| 155 | {
|
|---|
| 156 | npoints = 0;
|
|---|
| 157 | invalidate();
|
|---|
| 158 | }
|
|---|
| 159 |
|
|---|
| 160 | /**
|
|---|
| 161 | * Invalidate or flush all cached data. After direct manipulation of the
|
|---|
| 162 | * public member fields, this is necessary to avoid inconsistent results
|
|---|
| 163 | * in methods like <code>contains</code>.
|
|---|
| 164 | *
|
|---|
| 165 | * @see #getBounds()
|
|---|
| 166 | * @since 1.4
|
|---|
| 167 | */
|
|---|
| 168 | public void invalidate()
|
|---|
| 169 | {
|
|---|
| 170 | bounds = null;
|
|---|
| 171 | condensed = null;
|
|---|
| 172 | }
|
|---|
| 173 |
|
|---|
| 174 | /**
|
|---|
| 175 | * Translates the polygon by adding the specified values to all X and Y
|
|---|
| 176 | * coordinates. This updates the bounding box, if it has been calculated.
|
|---|
| 177 | *
|
|---|
| 178 | * @param dx the amount to add to all X coordinates
|
|---|
| 179 | * @param dy the amount to add to all Y coordinates
|
|---|
| 180 | * @since 1.1
|
|---|
| 181 | */
|
|---|
| 182 | public void translate(int dx, int dy)
|
|---|
| 183 | {
|
|---|
| 184 | int i = npoints;
|
|---|
| 185 | while (--i >= 0)
|
|---|
| 186 | {
|
|---|
| 187 | xpoints[i] += dx;
|
|---|
| 188 | xpoints[i] += dy;
|
|---|
| 189 | }
|
|---|
| 190 | if (bounds != null)
|
|---|
| 191 | {
|
|---|
| 192 | bounds.x += dx;
|
|---|
| 193 | bounds.y += dy;
|
|---|
| 194 | }
|
|---|
| 195 | condensed = null;
|
|---|
| 196 | }
|
|---|
| 197 |
|
|---|
| 198 | /**
|
|---|
| 199 | * Adds the specified endpoint to the polygon. This updates the bounding
|
|---|
| 200 | * box, if it has been created.
|
|---|
| 201 | *
|
|---|
| 202 | * @param x the X coordinate of the point to add
|
|---|
| 203 | * @param y the Y coordiante of the point to add
|
|---|
| 204 | */
|
|---|
| 205 | public void addPoint(int x, int y)
|
|---|
| 206 | {
|
|---|
| 207 | if (npoints + 1 > xpoints.length)
|
|---|
| 208 | {
|
|---|
| 209 | int[] newx = new int[npoints + 1];
|
|---|
| 210 | System.arraycopy(xpoints, 0, newx, 0, npoints);
|
|---|
| 211 | xpoints = newx;
|
|---|
| 212 | }
|
|---|
| 213 | if (npoints + 1 > ypoints.length)
|
|---|
| 214 | {
|
|---|
| 215 | int[] newy = new int[npoints + 1];
|
|---|
| 216 | System.arraycopy(ypoints, 0, newy, 0, npoints);
|
|---|
| 217 | ypoints = newy;
|
|---|
| 218 | }
|
|---|
| 219 | xpoints[npoints] = x;
|
|---|
| 220 | ypoints[npoints] = y;
|
|---|
| 221 | npoints++;
|
|---|
| 222 | if (bounds != null)
|
|---|
| 223 | {
|
|---|
| 224 | if (npoints == 1)
|
|---|
| 225 | {
|
|---|
| 226 | bounds.x = x;
|
|---|
| 227 | bounds.y = y;
|
|---|
| 228 | }
|
|---|
| 229 | else
|
|---|
| 230 | {
|
|---|
| 231 | if (x < bounds.x)
|
|---|
| 232 | {
|
|---|
| 233 | bounds.width += bounds.x - x;
|
|---|
| 234 | bounds.x = x;
|
|---|
| 235 | }
|
|---|
| 236 | else if (x > bounds.x + bounds.width)
|
|---|
| 237 | bounds.width = x - bounds.x;
|
|---|
| 238 | if (y < bounds.y)
|
|---|
| 239 | {
|
|---|
| 240 | bounds.height += bounds.y - y;
|
|---|
| 241 | bounds.y = y;
|
|---|
| 242 | }
|
|---|
| 243 | else if (y > bounds.y + bounds.height)
|
|---|
| 244 | bounds.height = y - bounds.y;
|
|---|
| 245 | }
|
|---|
| 246 | }
|
|---|
| 247 | condensed = null;
|
|---|
| 248 | }
|
|---|
| 249 |
|
|---|
| 250 | /**
|
|---|
| 251 | * Returns the bounding box of this polygon. This is the smallest
|
|---|
| 252 | * rectangle with sides parallel to the X axis that will contain this
|
|---|
| 253 | * polygon.
|
|---|
| 254 | *
|
|---|
| 255 | * @return the bounding box for this polygon
|
|---|
| 256 | * @see #getBounds2D()
|
|---|
| 257 | * @since 1.1
|
|---|
| 258 | */
|
|---|
| 259 | public Rectangle getBounds()
|
|---|
| 260 | {
|
|---|
| 261 | if (bounds == null)
|
|---|
| 262 | {
|
|---|
| 263 | if (npoints == 0)
|
|---|
| 264 | return bounds = new Rectangle();
|
|---|
| 265 | int i = npoints - 1;
|
|---|
| 266 | int minx = xpoints[i];
|
|---|
| 267 | int maxx = minx;
|
|---|
| 268 | int miny = ypoints[i];
|
|---|
| 269 | int maxy = miny;
|
|---|
| 270 | while (--i >= 0)
|
|---|
| 271 | {
|
|---|
| 272 | int x = xpoints[i];
|
|---|
| 273 | int y = ypoints[i];
|
|---|
| 274 | if (x < minx)
|
|---|
| 275 | minx = x;
|
|---|
| 276 | else if (x > maxx)
|
|---|
| 277 | maxx = x;
|
|---|
| 278 | if (y < miny)
|
|---|
| 279 | miny = y;
|
|---|
| 280 | else if (y > maxy)
|
|---|
| 281 | maxy = y;
|
|---|
| 282 | }
|
|---|
| 283 | bounds = new Rectangle(minx, maxy, maxx - minx, maxy - miny);
|
|---|
| 284 | }
|
|---|
| 285 | return bounds;
|
|---|
| 286 | }
|
|---|
| 287 |
|
|---|
| 288 | /**
|
|---|
| 289 | * Returns the bounding box of this polygon. This is the smallest
|
|---|
| 290 | * rectangle with sides parallel to the X axis that will contain this
|
|---|
| 291 | * polygon.
|
|---|
| 292 | *
|
|---|
| 293 | * @return the bounding box for this polygon
|
|---|
| 294 | * @see #getBounds2D()
|
|---|
| 295 | * @deprecated use {@link #getBounds()} instead
|
|---|
| 296 | */
|
|---|
| 297 | public Rectangle getBoundingBox()
|
|---|
| 298 | {
|
|---|
| 299 | return getBounds();
|
|---|
| 300 | }
|
|---|
| 301 |
|
|---|
| 302 | /**
|
|---|
| 303 | * Tests whether or not the specified point is inside this polygon.
|
|---|
| 304 | *
|
|---|
| 305 | * @param p the point to test
|
|---|
| 306 | * @return true if the point is inside this polygon
|
|---|
| 307 | * @throws NullPointerException if p is null
|
|---|
| 308 | * @see #contains(double, double)
|
|---|
| 309 | */
|
|---|
| 310 | public boolean contains(Point p)
|
|---|
| 311 | {
|
|---|
| 312 | return contains(p.getX(), p.getY());
|
|---|
| 313 | }
|
|---|
| 314 |
|
|---|
| 315 | /**
|
|---|
| 316 | * Tests whether or not the specified point is inside this polygon.
|
|---|
| 317 | *
|
|---|
| 318 | * @param x the X coordinate of the point to test
|
|---|
| 319 | * @param y the Y coordinate of the point to test
|
|---|
| 320 | * @return true if the point is inside this polygon
|
|---|
| 321 | * @see #contains(double, double)
|
|---|
| 322 | * @since 1.1
|
|---|
| 323 | */
|
|---|
| 324 | public boolean contains(int x, int y)
|
|---|
| 325 | {
|
|---|
| 326 | return contains((double) x, (double) y);
|
|---|
| 327 | }
|
|---|
| 328 |
|
|---|
| 329 | /**
|
|---|
| 330 | * Tests whether or not the specified point is inside this polygon.
|
|---|
| 331 | *
|
|---|
| 332 | * @param x the X coordinate of the point to test
|
|---|
| 333 | * @param y the Y coordinate of the point to test
|
|---|
| 334 | * @return true if the point is inside this polygon
|
|---|
| 335 | * @see #contains(double, double)
|
|---|
| 336 | * @deprecated use {@link #contains(int, int)} instead
|
|---|
| 337 | */
|
|---|
| 338 | public boolean inside(int x, int y)
|
|---|
| 339 | {
|
|---|
| 340 | return contains((double) x, (double) y);
|
|---|
| 341 | }
|
|---|
| 342 |
|
|---|
| 343 | /**
|
|---|
| 344 | * Returns a high-precision bounding box of this polygon. This is the
|
|---|
| 345 | * smallest rectangle with sides parallel to the X axis that will contain
|
|---|
| 346 | * this polygon.
|
|---|
| 347 | *
|
|---|
| 348 | * @return the bounding box for this polygon
|
|---|
| 349 | * @see #getBounds()
|
|---|
| 350 | * @since 1.2
|
|---|
| 351 | */
|
|---|
| 352 | public Rectangle2D getBounds2D()
|
|---|
| 353 | {
|
|---|
| 354 | // For polygons, the integer version is exact!
|
|---|
| 355 | return getBounds();
|
|---|
| 356 | }
|
|---|
| 357 |
|
|---|
| 358 | /**
|
|---|
| 359 | * Tests whether or not the specified point is inside this polygon.
|
|---|
| 360 | *
|
|---|
| 361 | * @param x the X coordinate of the point to test
|
|---|
| 362 | * @param y the Y coordinate of the point to test
|
|---|
| 363 | * @return true if the point is inside this polygon
|
|---|
| 364 | * @since 1.2
|
|---|
| 365 | */
|
|---|
| 366 | public boolean contains(double x, double y)
|
|---|
| 367 | {
|
|---|
| 368 | // First, the obvious bounds checks.
|
|---|
| 369 | if (! condense() || ! getBounds().contains(x, y))
|
|---|
| 370 | return false;
|
|---|
| 371 | // A point is contained if a ray to (-inf, y) crosses an odd number
|
|---|
| 372 | // of segments. This must obey the semantics of Shape when the point is
|
|---|
| 373 | // exactly on a segment or vertex: a point is inside only if the adjacent
|
|---|
| 374 | // point in the increasing x or y direction is also inside. Note that we
|
|---|
| 375 | // are guaranteed that the condensed polygon has area, and no consecutive
|
|---|
| 376 | // segments with identical slope.
|
|---|
| 377 | boolean inside = false;
|
|---|
| 378 | int limit = condensed[0];
|
|---|
| 379 | int curx = condensed[(limit << 1) - 1];
|
|---|
| 380 | int cury = condensed[limit << 1];
|
|---|
| 381 | for (int i = 1; i <= limit; i++)
|
|---|
| 382 | {
|
|---|
| 383 | int priorx = curx;
|
|---|
| 384 | int priory = cury;
|
|---|
| 385 | curx = condensed[(i << 1) - 1];
|
|---|
| 386 | cury = condensed[i << 1];
|
|---|
| 387 | if ((priorx > x && curx > x) // Left of segment, or NaN.
|
|---|
| 388 | || (priory > y && cury > y) // Below segment, or NaN.
|
|---|
| 389 | || (priory < y && cury < y)) // Above segment.
|
|---|
| 390 | continue;
|
|---|
| 391 | if (priory == cury) // Horizontal segment, y == cury == priory
|
|---|
| 392 | {
|
|---|
| 393 | if (priorx < x && curx < x) // Right of segment.
|
|---|
| 394 | {
|
|---|
| 395 | inside = ! inside;
|
|---|
| 396 | continue;
|
|---|
| 397 | }
|
|---|
| 398 | // Did we approach this segment from above or below?
|
|---|
| 399 | // This mess is necessary to obey rules of Shape.
|
|---|
| 400 | priory = condensed[((limit + i - 2) % limit) << 1];
|
|---|
| 401 | boolean above = priory > cury;
|
|---|
| 402 | if ((curx == x && (curx > priorx || above))
|
|---|
| 403 | || (priorx == x && (curx < priorx || ! above))
|
|---|
| 404 | || (curx > priorx && ! above) || above)
|
|---|
| 405 | inside = ! inside;
|
|---|
| 406 | continue;
|
|---|
| 407 | }
|
|---|
| 408 | if (priorx == x && priory == y) // On prior vertex.
|
|---|
| 409 | continue;
|
|---|
| 410 | if (priorx == curx // Vertical segment.
|
|---|
| 411 | || (priorx < x && curx < x)) // Right of segment.
|
|---|
| 412 | {
|
|---|
| 413 | inside = ! inside;
|
|---|
| 414 | continue;
|
|---|
| 415 | }
|
|---|
| 416 | // The point is inside the segment's bounding box, compare slopes.
|
|---|
| 417 | double leftx = curx > priorx ? priorx : curx;
|
|---|
| 418 | double lefty = curx > priorx ? priory : cury;
|
|---|
| 419 | double slopeseg = (double) (cury - priory) / (curx - priorx);
|
|---|
| 420 | double slopepoint = (double) (y - lefty) / (x - leftx);
|
|---|
| 421 | if ((slopeseg > 0 && slopeseg > slopepoint)
|
|---|
| 422 | || slopeseg < slopepoint)
|
|---|
| 423 | inside = ! inside;
|
|---|
| 424 | }
|
|---|
| 425 | return inside;
|
|---|
| 426 | }
|
|---|
| 427 |
|
|---|
| 428 | /**
|
|---|
| 429 | * Tests whether or not the specified point is inside this polygon.
|
|---|
| 430 | *
|
|---|
| 431 | * @param p the point to test
|
|---|
| 432 | * @return true if the point is inside this polygon
|
|---|
| 433 | * @throws NullPointerException if p is null
|
|---|
| 434 | * @see #contains(double, double)
|
|---|
| 435 | * @since 1.2
|
|---|
| 436 | */
|
|---|
| 437 | public boolean contains(Point2D p)
|
|---|
| 438 | {
|
|---|
| 439 | return contains(p.getX(), p.getY());
|
|---|
| 440 | }
|
|---|
| 441 |
|
|---|
| 442 | /**
|
|---|
| 443 | * Test if a high-precision rectangle intersects the shape. This is true
|
|---|
| 444 | * if any point in the rectangle is in the shape. This implementation is
|
|---|
| 445 | * precise.
|
|---|
| 446 | *
|
|---|
| 447 | * @param x the x coordinate of the rectangle
|
|---|
| 448 | * @param y the y coordinate of the rectangle
|
|---|
| 449 | * @param w the width of the rectangle, treated as point if negative
|
|---|
| 450 | * @param h the height of the rectangle, treated as point if negative
|
|---|
| 451 | * @return true if the rectangle intersects this shape
|
|---|
| 452 | * @since 1.2
|
|---|
| 453 | */
|
|---|
| 454 | public boolean intersects(double x, double y, double w, double h)
|
|---|
| 455 | {
|
|---|
| 456 | // First, the obvious bounds checks.
|
|---|
| 457 | if (w <= 0 || h <= 0 || npoints == 0 ||
|
|---|
| 458 | ! getBounds().intersects(x, y, w, h))
|
|---|
| 459 | return false; // Disjoint bounds.
|
|---|
| 460 | if ((x <= bounds.x && x + w >= bounds.x + bounds.width
|
|---|
| 461 | && y <= bounds.y && y + h >= bounds.y + bounds.height)
|
|---|
| 462 | || contains(x, y))
|
|---|
| 463 | return true; // Rectangle contains the polygon, or one point matches.
|
|---|
| 464 | // If any vertex is in the rectangle, the two might intersect.
|
|---|
| 465 | int curx = 0;
|
|---|
| 466 | int cury = 0;
|
|---|
| 467 | for (int i = 0; i < npoints; i++)
|
|---|
| 468 | {
|
|---|
| 469 | curx = xpoints[i];
|
|---|
| 470 | cury = ypoints[i];
|
|---|
| 471 | if (curx >= x && curx < x + w && cury >= y && cury < y + h
|
|---|
| 472 | && contains(curx, cury)) // Boundary check necessary.
|
|---|
| 473 | return true;
|
|---|
| 474 | }
|
|---|
| 475 | // Finally, if at least one of the four bounding lines intersect any
|
|---|
| 476 | // segment of the polygon, return true. Be careful of the semantics of
|
|---|
| 477 | // Shape; coinciding lines do not necessarily return true.
|
|---|
| 478 | for (int i = 0; i < npoints; i++)
|
|---|
| 479 | {
|
|---|
| 480 | int priorx = curx;
|
|---|
| 481 | int priory = cury;
|
|---|
| 482 | curx = xpoints[i];
|
|---|
| 483 | cury = ypoints[i];
|
|---|
| 484 | if (priorx == curx) // Vertical segment.
|
|---|
| 485 | {
|
|---|
| 486 | if (curx < x || curx >= x + w) // Outside rectangle.
|
|---|
| 487 | continue;
|
|---|
| 488 | if ((cury >= y + h && priory <= y)
|
|---|
| 489 | || (cury <= y && priory >= y + h))
|
|---|
| 490 | return true; // Bisects rectangle.
|
|---|
| 491 | continue;
|
|---|
| 492 | }
|
|---|
| 493 | if (priory == cury) // Horizontal segment.
|
|---|
| 494 | {
|
|---|
| 495 | if (cury < y || cury >= y + h) // Outside rectangle.
|
|---|
| 496 | continue;
|
|---|
| 497 | if ((curx >= x + w && priorx <= x)
|
|---|
| 498 | || (curx <= x && priorx >= x + w))
|
|---|
| 499 | return true; // Bisects rectangle.
|
|---|
| 500 | continue;
|
|---|
| 501 | }
|
|---|
| 502 | // Slanted segment.
|
|---|
| 503 | double slope = (double) (cury - priory) / (curx - priorx);
|
|---|
| 504 | double intersect = slope * (x - curx) + cury;
|
|---|
| 505 | if (intersect > y && intersect < y + h) // Intersects left edge.
|
|---|
| 506 | return true;
|
|---|
| 507 | intersect = slope * (x + w - curx) + cury;
|
|---|
| 508 | if (intersect > y && intersect < y + h) // Intersects right edge.
|
|---|
| 509 | return true;
|
|---|
| 510 | intersect = (y - cury) / slope + curx;
|
|---|
| 511 | if (intersect > x && intersect < x + w) // Intersects bottom edge.
|
|---|
| 512 | return true;
|
|---|
| 513 | intersect = (y + h - cury) / slope + cury;
|
|---|
| 514 | if (intersect > x && intersect < x + w) // Intersects top edge.
|
|---|
| 515 | return true;
|
|---|
| 516 | }
|
|---|
| 517 | return false;
|
|---|
| 518 | }
|
|---|
| 519 |
|
|---|
| 520 | /**
|
|---|
| 521 | * Test if a high-precision rectangle intersects the shape. This is true
|
|---|
| 522 | * if any point in the rectangle is in the shape. This implementation is
|
|---|
| 523 | * precise.
|
|---|
| 524 | *
|
|---|
| 525 | * @param r the rectangle
|
|---|
| 526 | * @return true if the rectangle intersects this shape
|
|---|
| 527 | * @throws NullPointerException if r is null
|
|---|
| 528 | * @see #intersects(double, double, double, double)
|
|---|
| 529 | * @since 1.2
|
|---|
| 530 | */
|
|---|
| 531 | public boolean intersects(Rectangle2D r)
|
|---|
| 532 | {
|
|---|
| 533 | return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
|
|---|
| 534 | }
|
|---|
| 535 |
|
|---|
| 536 | /**
|
|---|
| 537 | * Test if a high-precision rectangle lies completely in the shape. This is
|
|---|
| 538 | * true if all points in the rectangle are in the shape. This implementation
|
|---|
| 539 | * is precise.
|
|---|
| 540 | *
|
|---|
| 541 | * @param x the x coordinate of the rectangle
|
|---|
| 542 | * @param y the y coordinate of the rectangle
|
|---|
| 543 | * @param w the width of the rectangle, treated as point if negative
|
|---|
| 544 | * @param h the height of the rectangle, treated as point if negative
|
|---|
| 545 | * @return true if the rectangle is contained in this shape
|
|---|
| 546 | * @since 1.2
|
|---|
| 547 | */
|
|---|
| 548 | public boolean contains(double x, double y, double w, double h)
|
|---|
| 549 | {
|
|---|
| 550 | // First, the obvious bounds checks.
|
|---|
| 551 | if (w <= 0 || h <= 0 || ! contains(x, y)
|
|---|
| 552 | || ! bounds.contains(x, y, w, h))
|
|---|
| 553 | return false;
|
|---|
| 554 | // Now, if any of the four bounding lines intersects a polygon segment,
|
|---|
| 555 | // return false. The previous check had the side effect of setting
|
|---|
| 556 | // the condensed array, which we use. Be careful of the semantics of
|
|---|
| 557 | // Shape; coinciding lines do not necessarily return false.
|
|---|
| 558 | int limit = condensed[0];
|
|---|
| 559 | int curx = condensed[(limit << 1) - 1];
|
|---|
| 560 | int cury = condensed[limit << 1];
|
|---|
| 561 | for (int i = 1; i <= limit; i++)
|
|---|
| 562 | {
|
|---|
| 563 | int priorx = curx;
|
|---|
| 564 | int priory = cury;
|
|---|
| 565 | curx = condensed[(i << 1) - 1];
|
|---|
| 566 | cury = condensed[i << 1];
|
|---|
| 567 | if (curx > x && curx < x + w && cury > y && cury < y + h)
|
|---|
| 568 | return false; // Vertex is in rectangle.
|
|---|
| 569 | if (priorx == curx) // Vertical segment.
|
|---|
| 570 | {
|
|---|
| 571 | if (curx < x || curx > x + w) // Outside rectangle.
|
|---|
| 572 | continue;
|
|---|
| 573 | if ((cury >= y + h && priory <= y)
|
|---|
| 574 | || (cury <= y && priory >= y + h))
|
|---|
| 575 | return false; // Bisects rectangle.
|
|---|
| 576 | continue;
|
|---|
| 577 | }
|
|---|
| 578 | if (priory == cury) // Horizontal segment.
|
|---|
| 579 | {
|
|---|
| 580 | if (cury < y || cury > y + h) // Outside rectangle.
|
|---|
| 581 | continue;
|
|---|
| 582 | if ((curx >= x + w && priorx <= x)
|
|---|
| 583 | || (curx <= x && priorx >= x + w))
|
|---|
| 584 | return false; // Bisects rectangle.
|
|---|
| 585 | continue;
|
|---|
| 586 | }
|
|---|
| 587 | // Slanted segment.
|
|---|
| 588 | double slope = (double) (cury - priory) / (curx - priorx);
|
|---|
| 589 | double intersect = slope * (x - curx) + cury;
|
|---|
| 590 | if (intersect > y && intersect < y + h) // Intersects left edge.
|
|---|
| 591 | return false;
|
|---|
| 592 | intersect = slope * (x + w - curx) + cury;
|
|---|
| 593 | if (intersect > y && intersect < y + h) // Intersects right edge.
|
|---|
| 594 | return false;
|
|---|
| 595 | intersect = (y - cury) / slope + curx;
|
|---|
| 596 | if (intersect > x && intersect < x + w) // Intersects bottom edge.
|
|---|
| 597 | return false;
|
|---|
| 598 | intersect = (y + h - cury) / slope + cury;
|
|---|
| 599 | if (intersect > x && intersect < x + w) // Intersects top edge.
|
|---|
| 600 | return false;
|
|---|
| 601 | }
|
|---|
| 602 | return true;
|
|---|
| 603 | }
|
|---|
| 604 |
|
|---|
| 605 | /**
|
|---|
| 606 | * Test if a high-precision rectangle lies completely in the shape. This is
|
|---|
| 607 | * true if all points in the rectangle are in the shape. This implementation
|
|---|
| 608 | * is precise.
|
|---|
| 609 | *
|
|---|
| 610 | * @param r the rectangle
|
|---|
| 611 | * @return true if the rectangle is contained in this shape
|
|---|
| 612 | * @throws NullPointerException if r is null
|
|---|
| 613 | * @see #contains(double, double, double, double)
|
|---|
| 614 | * @since 1.2
|
|---|
| 615 | */
|
|---|
| 616 | public boolean contains(Rectangle2D r)
|
|---|
| 617 | {
|
|---|
| 618 | return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
|
|---|
| 619 | }
|
|---|
| 620 |
|
|---|
| 621 | /**
|
|---|
| 622 | * Return an iterator along the shape boundary. If the optional transform
|
|---|
| 623 | * is provided, the iterator is transformed accordingly. Each call returns
|
|---|
| 624 | * a new object, independent from others in use. This class is not
|
|---|
| 625 | * threadsafe to begin with, so the path iterator is not either.
|
|---|
| 626 | *
|
|---|
| 627 | * @param transform an optional transform to apply to the iterator
|
|---|
| 628 | * @return a new iterator over the boundary
|
|---|
| 629 | * @since 1.2
|
|---|
| 630 | */
|
|---|
| 631 | public PathIterator getPathIterator(final AffineTransform transform)
|
|---|
| 632 | {
|
|---|
| 633 | return new PathIterator()
|
|---|
| 634 | {
|
|---|
| 635 | /** The current vertex of iteration. */
|
|---|
| 636 | private int vertex;
|
|---|
| 637 |
|
|---|
| 638 | public int getWindingRule()
|
|---|
| 639 | {
|
|---|
| 640 | return WIND_EVEN_ODD;
|
|---|
| 641 | }
|
|---|
| 642 |
|
|---|
| 643 | public boolean isDone()
|
|---|
| 644 | {
|
|---|
| 645 | return vertex > npoints;
|
|---|
| 646 | }
|
|---|
| 647 |
|
|---|
| 648 | public void next()
|
|---|
| 649 | {
|
|---|
| 650 | vertex++;
|
|---|
| 651 | }
|
|---|
| 652 |
|
|---|
| 653 | public int currentSegment(float[] coords)
|
|---|
| 654 | {
|
|---|
| 655 | if (vertex >= npoints)
|
|---|
| 656 | return SEG_CLOSE;
|
|---|
| 657 | coords[0] = xpoints[vertex];
|
|---|
| 658 | coords[1] = ypoints[vertex];
|
|---|
| 659 | if (transform != null)
|
|---|
| 660 | transform.transform(coords, 0, coords, 0, 1);
|
|---|
| 661 | return vertex == 0 ? SEG_MOVETO : SEG_LINETO;
|
|---|
| 662 | }
|
|---|
| 663 |
|
|---|
| 664 | public int currentSegment(double[] coords)
|
|---|
| 665 | {
|
|---|
| 666 | if (vertex >= npoints)
|
|---|
| 667 | return SEG_CLOSE;
|
|---|
| 668 | coords[0] = xpoints[vertex];
|
|---|
| 669 | coords[1] = ypoints[vertex];
|
|---|
| 670 | if (transform != null)
|
|---|
| 671 | transform.transform(coords, 0, coords, 0, 1);
|
|---|
| 672 | return vertex == 0 ? SEG_MOVETO : SEG_LINETO;
|
|---|
| 673 | }
|
|---|
| 674 | };
|
|---|
| 675 | }
|
|---|
| 676 |
|
|---|
| 677 | /**
|
|---|
| 678 | * Return an iterator along the flattened version of the shape boundary.
|
|---|
| 679 | * Since polygons are already flat, the flatness parameter is ignored, and
|
|---|
| 680 | * the resulting iterator only has SEG_MOVETO, SEG_LINETO and SEG_CLOSE
|
|---|
| 681 | * points. If the optional transform is provided, the iterator is
|
|---|
| 682 | * transformed accordingly. Each call returns a new object, independent
|
|---|
| 683 | * from others in use. This class is not threadsafe to begin with, so the
|
|---|
| 684 | * path iterator is not either.
|
|---|
| 685 | *
|
|---|
| 686 | * @param transform an optional transform to apply to the iterator
|
|---|
| 687 | * @param double the maximum distance for deviation from the real boundary
|
|---|
| 688 | * @return a new iterator over the boundary
|
|---|
| 689 | * @since 1.2
|
|---|
| 690 | */
|
|---|
| 691 | public PathIterator getPathIterator(AffineTransform transform,
|
|---|
| 692 | double flatness)
|
|---|
| 693 | {
|
|---|
| 694 | return getPathIterator(transform);
|
|---|
| 695 | }
|
|---|
| 696 |
|
|---|
| 697 | /**
|
|---|
| 698 | * Helper for contains, which caches a condensed version of the polygon.
|
|---|
| 699 | * This condenses all colinear points, so that consecutive segments in
|
|---|
| 700 | * the condensed version always have different slope.
|
|---|
| 701 | *
|
|---|
| 702 | * @return true if the condensed polygon has area
|
|---|
| 703 | * @see #condensed
|
|---|
| 704 | * @see #contains(double, double)
|
|---|
| 705 | */
|
|---|
| 706 | private boolean condense()
|
|---|
| 707 | {
|
|---|
| 708 | if (npoints <= 2)
|
|---|
| 709 | return false;
|
|---|
| 710 | if (condensed != null)
|
|---|
| 711 | return condensed[0] > 2;
|
|---|
| 712 | condensed = new int[npoints * 2 + 1];
|
|---|
| 713 | int curx = xpoints[npoints - 1];
|
|---|
| 714 | int cury = ypoints[npoints - 1];
|
|---|
| 715 | double curslope = Double.NaN;
|
|---|
| 716 | int count = 0;
|
|---|
| 717 | outer:
|
|---|
| 718 | for (int i = 0; i < npoints; i++)
|
|---|
| 719 | {
|
|---|
| 720 | int priorx = curx;
|
|---|
| 721 | int priory = cury;
|
|---|
| 722 | double priorslope = curslope;
|
|---|
| 723 | curx = xpoints[i];
|
|---|
| 724 | cury = ypoints[i];
|
|---|
| 725 | while (curx == priorx && cury == priory)
|
|---|
| 726 | {
|
|---|
| 727 | if (++i == npoints)
|
|---|
| 728 | break outer;
|
|---|
| 729 | curx = xpoints[i];
|
|---|
| 730 | cury = ypoints[i];
|
|---|
| 731 | }
|
|---|
| 732 | curslope = (curx == priorx ? Double.POSITIVE_INFINITY
|
|---|
| 733 | : (double) (cury - priory) / (curx - priorx));
|
|---|
| 734 | if (priorslope == curslope)
|
|---|
| 735 | {
|
|---|
| 736 | if (count > 1 && condensed[(count << 1) - 3] == curx
|
|---|
| 737 | && condensed[(count << 1) - 2] == cury)
|
|---|
| 738 | {
|
|---|
| 739 | count--;
|
|---|
| 740 | continue;
|
|---|
| 741 | }
|
|---|
| 742 | }
|
|---|
| 743 | else
|
|---|
| 744 | count++;
|
|---|
| 745 | condensed[(count << 1) - 1] = curx;
|
|---|
| 746 | condensed[count << 1] = cury;
|
|---|
| 747 | }
|
|---|
| 748 | condensed[0] = count;
|
|---|
| 749 | return count > 2;
|
|---|
| 750 | }
|
|---|
| 751 | } // class Polygon
|
|---|