| 1 |
|
|---|
| 2 | /* @(#)k_rem_pio2.c 5.1 93/09/24 */
|
|---|
| 3 | /*
|
|---|
| 4 | * ====================================================
|
|---|
| 5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|---|
| 6 | *
|
|---|
| 7 | * Developed at SunPro, a Sun Microsystems, Inc. business.
|
|---|
| 8 | * Permission to use, copy, modify, and distribute this
|
|---|
| 9 | * software is freely granted, provided that this notice
|
|---|
| 10 | * is preserved.
|
|---|
| 11 | * ====================================================
|
|---|
| 12 | */
|
|---|
| 13 |
|
|---|
| 14 | /*
|
|---|
| 15 | * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
|
|---|
| 16 | * double x[],y[]; int e0,nx,prec; int ipio2[];
|
|---|
| 17 | *
|
|---|
| 18 | * __kernel_rem_pio2 return the last three digits of N with
|
|---|
| 19 | * y = x - N*pi/2
|
|---|
| 20 | * so that |y| < pi/2.
|
|---|
| 21 | *
|
|---|
| 22 | * The method is to compute the integer (mod 8) and fraction parts of
|
|---|
| 23 | * (2/pi)*x without doing the full multiplication. In general we
|
|---|
| 24 | * skip the part of the product that are known to be a huge integer (
|
|---|
| 25 | * more accurately, = 0 mod 8 ). Thus the number of operations are
|
|---|
| 26 | * independent of the exponent of the input.
|
|---|
| 27 | *
|
|---|
| 28 | * (2/pi) is represented by an array of 24-bit integers in ipio2[].
|
|---|
| 29 | *
|
|---|
| 30 | * Input parameters:
|
|---|
| 31 | * x[] The input value (must be positive) is broken into nx
|
|---|
| 32 | * pieces of 24-bit integers in double precision format.
|
|---|
| 33 | * x[i] will be the i-th 24 bit of x. The scaled exponent
|
|---|
| 34 | * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
|
|---|
| 35 | * match x's up to 24 bits.
|
|---|
| 36 | *
|
|---|
| 37 | * Example of breaking a double positive z into x[0]+x[1]+x[2]:
|
|---|
| 38 | * e0 = ilogb(z)-23
|
|---|
| 39 | * z = scalbn(z,-e0)
|
|---|
| 40 | * for i = 0,1,2
|
|---|
| 41 | * x[i] = floor(z)
|
|---|
| 42 | * z = (z-x[i])*2**24
|
|---|
| 43 | *
|
|---|
| 44 | *
|
|---|
| 45 | * y[] ouput result in an array of double precision numbers.
|
|---|
| 46 | * The dimension of y[] is:
|
|---|
| 47 | * 24-bit precision 1
|
|---|
| 48 | * 53-bit precision 2
|
|---|
| 49 | * 64-bit precision 2
|
|---|
| 50 | * 113-bit precision 3
|
|---|
| 51 | * The actual value is the sum of them. Thus for 113-bit
|
|---|
| 52 | * precison, one may have to do something like:
|
|---|
| 53 | *
|
|---|
| 54 | * long double t,w,r_head, r_tail;
|
|---|
| 55 | * t = (long double)y[2] + (long double)y[1];
|
|---|
| 56 | * w = (long double)y[0];
|
|---|
| 57 | * r_head = t+w;
|
|---|
| 58 | * r_tail = w - (r_head - t);
|
|---|
| 59 | *
|
|---|
| 60 | * e0 The exponent of x[0]
|
|---|
| 61 | *
|
|---|
| 62 | * nx dimension of x[]
|
|---|
| 63 | *
|
|---|
| 64 | * prec an integer indicating the precision:
|
|---|
| 65 | * 0 24 bits (single)
|
|---|
| 66 | * 1 53 bits (double)
|
|---|
| 67 | * 2 64 bits (extended)
|
|---|
| 68 | * 3 113 bits (quad)
|
|---|
| 69 | *
|
|---|
| 70 | * ipio2[]
|
|---|
| 71 | * integer array, contains the (24*i)-th to (24*i+23)-th
|
|---|
| 72 | * bit of 2/pi after binary point. The corresponding
|
|---|
| 73 | * floating value is
|
|---|
| 74 | *
|
|---|
| 75 | * ipio2[i] * 2^(-24(i+1)).
|
|---|
| 76 | *
|
|---|
| 77 | * External function:
|
|---|
| 78 | * double scalbn(), floor();
|
|---|
| 79 | *
|
|---|
| 80 | *
|
|---|
| 81 | * Here is the description of some local variables:
|
|---|
| 82 | *
|
|---|
| 83 | * jk jk+1 is the initial number of terms of ipio2[] needed
|
|---|
| 84 | * in the computation. The recommended value is 2,3,4,
|
|---|
| 85 | * 6 for single, double, extended,and quad.
|
|---|
| 86 | *
|
|---|
| 87 | * jz local integer variable indicating the number of
|
|---|
| 88 | * terms of ipio2[] used.
|
|---|
| 89 | *
|
|---|
| 90 | * jx nx - 1
|
|---|
| 91 | *
|
|---|
| 92 | * jv index for pointing to the suitable ipio2[] for the
|
|---|
| 93 | * computation. In general, we want
|
|---|
| 94 | * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
|
|---|
| 95 | * is an integer. Thus
|
|---|
| 96 | * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
|
|---|
| 97 | * Hence jv = max(0,(e0-3)/24).
|
|---|
| 98 | *
|
|---|
| 99 | * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
|
|---|
| 100 | *
|
|---|
| 101 | * q[] double array with integral value, representing the
|
|---|
| 102 | * 24-bits chunk of the product of x and 2/pi.
|
|---|
| 103 | *
|
|---|
| 104 | * q0 the corresponding exponent of q[0]. Note that the
|
|---|
| 105 | * exponent for q[i] would be q0-24*i.
|
|---|
| 106 | *
|
|---|
| 107 | * PIo2[] double precision array, obtained by cutting pi/2
|
|---|
| 108 | * into 24 bits chunks.
|
|---|
| 109 | *
|
|---|
| 110 | * f[] ipio2[] in floating point
|
|---|
| 111 | *
|
|---|
| 112 | * iq[] integer array by breaking up q[] in 24-bits chunk.
|
|---|
| 113 | *
|
|---|
| 114 | * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
|
|---|
| 115 | *
|
|---|
| 116 | * ih integer. If >0 it indicates q[] is >= 0.5, hence
|
|---|
| 117 | * it also indicates the *sign* of the result.
|
|---|
| 118 | *
|
|---|
| 119 | */
|
|---|
| 120 |
|
|---|
| 121 |
|
|---|
| 122 | /*
|
|---|
| 123 | * Constants:
|
|---|
| 124 | * The hexadecimal values are the intended ones for the following
|
|---|
| 125 | * constants. The decimal values may be used, provided that the
|
|---|
| 126 | * compiler will convert from decimal to binary accurately enough
|
|---|
| 127 | * to produce the hexadecimal values shown.
|
|---|
| 128 | */
|
|---|
| 129 |
|
|---|
| 130 | #include "fdlibm.h"
|
|---|
| 131 |
|
|---|
| 132 | #ifndef _DOUBLE_IS_32BITS
|
|---|
| 133 |
|
|---|
| 134 | #ifdef __STDC__
|
|---|
| 135 | static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
|
|---|
| 136 | #else
|
|---|
| 137 | static int init_jk[] = {2,3,4,6};
|
|---|
| 138 | #endif
|
|---|
| 139 |
|
|---|
| 140 | #ifdef __STDC__
|
|---|
| 141 | static const double PIo2[] = {
|
|---|
| 142 | #else
|
|---|
| 143 | static double PIo2[] = {
|
|---|
| 144 | #endif
|
|---|
| 145 | 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
|
|---|
| 146 | 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
|
|---|
| 147 | 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
|
|---|
| 148 | 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
|
|---|
| 149 | 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
|
|---|
| 150 | 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
|
|---|
| 151 | 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
|
|---|
| 152 | 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
|
|---|
| 153 | };
|
|---|
| 154 |
|
|---|
| 155 | #ifdef __STDC__
|
|---|
| 156 | static const double
|
|---|
| 157 | #else
|
|---|
| 158 | static double
|
|---|
| 159 | #endif
|
|---|
| 160 | zero = 0.0,
|
|---|
| 161 | one = 1.0,
|
|---|
| 162 | two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
|---|
| 163 | twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
|
|---|
| 164 |
|
|---|
| 165 | #ifdef __STDC__
|
|---|
| 166 | int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
|
|---|
| 167 | #else
|
|---|
| 168 | int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
|
|---|
| 169 | double x[], y[]; int e0,nx,prec; int32_t ipio2[];
|
|---|
| 170 | #endif
|
|---|
| 171 | {
|
|---|
| 172 | int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
|
|---|
| 173 | double z,fw,f[20],fq[20],q[20];
|
|---|
| 174 |
|
|---|
| 175 | /* initialize jk*/
|
|---|
| 176 | jk = init_jk[prec];
|
|---|
| 177 | jp = jk;
|
|---|
| 178 |
|
|---|
| 179 | /* determine jx,jv,q0, note that 3>q0 */
|
|---|
| 180 | jx = nx-1;
|
|---|
| 181 | jv = (e0-3)/24; if(jv<0) jv=0;
|
|---|
| 182 | q0 = e0-24*(jv+1);
|
|---|
| 183 |
|
|---|
| 184 | /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
|
|---|
| 185 | j = jv-jx; m = jx+jk;
|
|---|
| 186 | for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
|
|---|
| 187 |
|
|---|
| 188 | /* compute q[0],q[1],...q[jk] */
|
|---|
| 189 | for (i=0;i<=jk;i++) {
|
|---|
| 190 | for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
|
|---|
| 191 | }
|
|---|
| 192 |
|
|---|
| 193 | jz = jk;
|
|---|
| 194 | recompute:
|
|---|
| 195 | /* distill q[] into iq[] reversingly */
|
|---|
| 196 | for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
|
|---|
| 197 | fw = (double)((int32_t)(twon24* z));
|
|---|
| 198 | iq[i] = (int32_t)(z-two24*fw);
|
|---|
| 199 | z = q[j-1]+fw;
|
|---|
| 200 | }
|
|---|
| 201 |
|
|---|
| 202 | /* compute n */
|
|---|
| 203 | z = scalbn(z,(int)q0); /* actual value of z */
|
|---|
| 204 | z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
|
|---|
| 205 | n = (int32_t) z;
|
|---|
| 206 | z -= (double)n;
|
|---|
| 207 | ih = 0;
|
|---|
| 208 | if(q0>0) { /* need iq[jz-1] to determine n */
|
|---|
| 209 | i = (iq[jz-1]>>(24-q0)); n += i;
|
|---|
| 210 | iq[jz-1] -= i<<(24-q0);
|
|---|
| 211 | ih = iq[jz-1]>>(23-q0);
|
|---|
| 212 | }
|
|---|
| 213 | else if(q0==0) ih = iq[jz-1]>>23;
|
|---|
| 214 | else if(z>=0.5) ih=2;
|
|---|
| 215 |
|
|---|
| 216 | if(ih>0) { /* q > 0.5 */
|
|---|
| 217 | n += 1; carry = 0;
|
|---|
| 218 | for(i=0;i<jz ;i++) { /* compute 1-q */
|
|---|
| 219 | j = iq[i];
|
|---|
| 220 | if(carry==0) {
|
|---|
| 221 | if(j!=0) {
|
|---|
| 222 | carry = 1; iq[i] = 0x1000000- j;
|
|---|
| 223 | }
|
|---|
| 224 | } else iq[i] = 0xffffff - j;
|
|---|
| 225 | }
|
|---|
| 226 | if(q0>0) { /* rare case: chance is 1 in 12 */
|
|---|
| 227 | switch(q0) {
|
|---|
| 228 | case 1:
|
|---|
| 229 | iq[jz-1] &= 0x7fffff; break;
|
|---|
| 230 | case 2:
|
|---|
| 231 | iq[jz-1] &= 0x3fffff; break;
|
|---|
| 232 | }
|
|---|
| 233 | }
|
|---|
| 234 | if(ih==2) {
|
|---|
| 235 | z = one - z;
|
|---|
| 236 | if(carry!=0) z -= scalbn(one,(int)q0);
|
|---|
| 237 | }
|
|---|
| 238 | }
|
|---|
| 239 |
|
|---|
| 240 | /* check if recomputation is needed */
|
|---|
| 241 | if(z==zero) {
|
|---|
| 242 | j = 0;
|
|---|
| 243 | for (i=jz-1;i>=jk;i--) j |= iq[i];
|
|---|
| 244 | if(j==0) { /* need recomputation */
|
|---|
| 245 | for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
|
|---|
| 246 |
|
|---|
| 247 | for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
|
|---|
| 248 | f[jx+i] = (double) ipio2[jv+i];
|
|---|
| 249 | for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
|
|---|
| 250 | q[i] = fw;
|
|---|
| 251 | }
|
|---|
| 252 | jz += k;
|
|---|
| 253 | goto recompute;
|
|---|
| 254 | }
|
|---|
| 255 | }
|
|---|
| 256 |
|
|---|
| 257 | /* chop off zero terms */
|
|---|
| 258 | if(z==0.0) {
|
|---|
| 259 | jz -= 1; q0 -= 24;
|
|---|
| 260 | while(iq[jz]==0) { jz--; q0-=24;}
|
|---|
| 261 | } else { /* break z into 24-bit if necessary */
|
|---|
| 262 | z = scalbn(z,-(int)q0);
|
|---|
| 263 | if(z>=two24) {
|
|---|
| 264 | fw = (double)((int32_t)(twon24*z));
|
|---|
| 265 | iq[jz] = (int32_t)(z-two24*fw);
|
|---|
| 266 | jz += 1; q0 += 24;
|
|---|
| 267 | iq[jz] = (int32_t) fw;
|
|---|
| 268 | } else iq[jz] = (int32_t) z ;
|
|---|
| 269 | }
|
|---|
| 270 |
|
|---|
| 271 | /* convert integer "bit" chunk to floating-point value */
|
|---|
| 272 | fw = scalbn(one,(int)q0);
|
|---|
| 273 | for(i=jz;i>=0;i--) {
|
|---|
| 274 | q[i] = fw*(double)iq[i]; fw*=twon24;
|
|---|
| 275 | }
|
|---|
| 276 |
|
|---|
| 277 | /* compute PIo2[0,...,jp]*q[jz,...,0] */
|
|---|
| 278 | for(i=jz;i>=0;i--) {
|
|---|
| 279 | for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
|
|---|
| 280 | fq[jz-i] = fw;
|
|---|
| 281 | }
|
|---|
| 282 |
|
|---|
| 283 | /* compress fq[] into y[] */
|
|---|
| 284 | switch(prec) {
|
|---|
| 285 | case 0:
|
|---|
| 286 | fw = 0.0;
|
|---|
| 287 | for (i=jz;i>=0;i--) fw += fq[i];
|
|---|
| 288 | y[0] = (ih==0)? fw: -fw;
|
|---|
| 289 | break;
|
|---|
| 290 | case 1:
|
|---|
| 291 | case 2:
|
|---|
| 292 | fw = 0.0;
|
|---|
| 293 | for (i=jz;i>=0;i--) fw += fq[i];
|
|---|
| 294 | y[0] = (ih==0)? fw: -fw;
|
|---|
| 295 | fw = fq[0]-fw;
|
|---|
| 296 | for (i=1;i<=jz;i++) fw += fq[i];
|
|---|
| 297 | y[1] = (ih==0)? fw: -fw;
|
|---|
| 298 | break;
|
|---|
| 299 | case 3: /* painful */
|
|---|
| 300 | for (i=jz;i>0;i--) {
|
|---|
| 301 | fw = fq[i-1]+fq[i];
|
|---|
| 302 | fq[i] += fq[i-1]-fw;
|
|---|
| 303 | fq[i-1] = fw;
|
|---|
| 304 | }
|
|---|
| 305 | for (i=jz;i>1;i--) {
|
|---|
| 306 | fw = fq[i-1]+fq[i];
|
|---|
| 307 | fq[i] += fq[i-1]-fw;
|
|---|
| 308 | fq[i-1] = fw;
|
|---|
| 309 | }
|
|---|
| 310 | for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
|
|---|
| 311 | if(ih==0) {
|
|---|
| 312 | y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
|
|---|
| 313 | } else {
|
|---|
| 314 | y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
|
|---|
| 315 | }
|
|---|
| 316 | }
|
|---|
| 317 | return n&7;
|
|---|
| 318 | }
|
|---|
| 319 |
|
|---|
| 320 | #endif /* defined(_DOUBLE_IS_32BITS) */
|
|---|