source: trunk/gcc/libjava/java/lang/e_log.c@ 3103

Last change on this file since 3103 was 2, checked in by bird, 23 years ago

Initial revision

  • Property cvs2svn:cvs-rev set to 1.1
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 4.4 KB
Line 
1
2/* @(#)e_log.c 5.1 93/09/24 */
3/*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 *
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
12 */
13
14/* __ieee754_log(x)
15 * Return the logrithm of x
16 *
17 * Method :
18 * 1. Argument Reduction: find k and f such that
19 * x = 2^k * (1+f),
20 * where sqrt(2)/2 < 1+f < sqrt(2) .
21 *
22 * 2. Approximation of log(1+f).
23 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
24 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
25 * = 2s + s*R
26 * We use a special Reme algorithm on [0,0.1716] to generate
27 * a polynomial of degree 14 to approximate R The maximum error
28 * of this polynomial approximation is bounded by 2**-58.45. In
29 * other words,
30 * 2 4 6 8 10 12 14
31 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
32 * (the values of Lg1 to Lg7 are listed in the program)
33 * and
34 * | 2 14 | -58.45
35 * | Lg1*s +...+Lg7*s - R(z) | <= 2
36 * | |
37 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
38 * In order to guarantee error in log below 1ulp, we compute log
39 * by
40 * log(1+f) = f - s*(f - R) (if f is not too large)
41 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
42 *
43 * 3. Finally, log(x) = k*ln2 + log(1+f).
44 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
45 * Here ln2 is split into two floating point number:
46 * ln2_hi + ln2_lo,
47 * where n*ln2_hi is always exact for |n| < 2000.
48 *
49 * Special cases:
50 * log(x) is NaN with signal if x < 0 (including -INF) ;
51 * log(+INF) is +INF; log(0) is -INF with signal;
52 * log(NaN) is that NaN with no signal.
53 *
54 * Accuracy:
55 * according to an error analysis, the error is always less than
56 * 1 ulp (unit in the last place).
57 *
58 * Constants:
59 * The hexadecimal values are the intended ones for the following
60 * constants. The decimal values may be used, provided that the