| 1 | /* Complex math module */
|
|---|
| 2 |
|
|---|
| 3 | /* much code borrowed from mathmodule.c */
|
|---|
| 4 |
|
|---|
| 5 | #include "Python.h"
|
|---|
| 6 |
|
|---|
| 7 | #ifndef M_PI
|
|---|
| 8 | #define M_PI (3.141592653589793239)
|
|---|
| 9 | #endif
|
|---|
| 10 |
|
|---|
| 11 | /* First, the C functions that do the real work */
|
|---|
| 12 |
|
|---|
| 13 | /* constants */
|
|---|
| 14 | static Py_complex c_one = {1., 0.};
|
|---|
| 15 | static Py_complex c_half = {0.5, 0.};
|
|---|
| 16 | static Py_complex c_i = {0., 1.};
|
|---|
| 17 | static Py_complex c_halfi = {0., 0.5};
|
|---|
| 18 |
|
|---|
| 19 | /* forward declarations */
|
|---|
| 20 | static Py_complex c_log(Py_complex);
|
|---|
| 21 | static Py_complex c_prodi(Py_complex);
|
|---|
| 22 | static Py_complex c_sqrt(Py_complex);
|
|---|
| 23 | static PyObject * math_error(void);
|
|---|
| 24 |
|
|---|
| 25 |
|
|---|
| 26 | static Py_complex
|
|---|
| 27 | c_acos(Py_complex x)
|
|---|
| 28 | {
|
|---|
| 29 | return c_neg(c_prodi(c_log(c_sum(x,c_prod(c_i,
|
|---|
| 30 | c_sqrt(c_diff(c_one,c_prod(x,x))))))));
|
|---|
| 31 | }
|
|---|
| 32 |
|
|---|
| 33 | PyDoc_STRVAR(c_acos_doc,
|
|---|
| 34 | "acos(x)\n"
|
|---|
| 35 | "\n"
|
|---|
| 36 | "Return the arc cosine of x.");
|
|---|
| 37 |
|
|---|
| 38 |
|
|---|
| 39 | static Py_complex
|
|---|
| 40 | c_acosh(Py_complex x)
|
|---|
| 41 | {
|
|---|
| 42 | Py_complex z;
|
|---|
| 43 | z = c_sqrt(c_half);
|
|---|
| 44 | z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x,c_one)),
|
|---|
| 45 | c_sqrt(c_diff(x,c_one)))));
|
|---|
| 46 | return c_sum(z, z);
|
|---|
| 47 | }
|
|---|
| 48 |
|
|---|
| 49 | PyDoc_STRVAR(c_acosh_doc,
|
|---|
| 50 | "acosh(x)\n"
|
|---|
| 51 | "\n"
|
|---|
| 52 | "Return the hyperbolic arccosine of x.");
|
|---|
| 53 |
|
|---|
| 54 |
|
|---|
| 55 | static Py_complex
|
|---|
| 56 | c_asin(Py_complex x)
|
|---|
| 57 | {
|
|---|
| 58 | /* -i * log[(sqrt(1-x**2) + i*x] */
|
|---|
| 59 | const Py_complex squared = c_prod(x, x);
|
|---|
| 60 | const Py_complex sqrt_1_minus_x_sq = c_sqrt(c_diff(c_one, squared));
|
|---|
| 61 | return c_neg(c_prodi(c_log(
|
|---|
| 62 | c_sum(sqrt_1_minus_x_sq, c_prodi(x))
|
|---|
| 63 | ) ) );
|
|---|
| 64 | }
|
|---|
| 65 |
|
|---|
| 66 | PyDoc_STRVAR(c_asin_doc,
|
|---|
| 67 | "asin(x)\n"
|
|---|
| 68 | "\n"
|
|---|
| 69 | "Return the arc sine of x.");
|
|---|
| 70 |
|
|---|
| 71 |
|
|---|
| 72 | static Py_complex
|
|---|
| 73 | c_asinh(Py_complex x)
|
|---|
| 74 | {
|
|---|
| 75 | Py_complex z;
|
|---|
| 76 | z = c_sqrt(c_half);
|
|---|
| 77 | z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x, c_i)),
|
|---|
| 78 | c_sqrt(c_diff(x, c_i)))));
|
|---|
| 79 | return c_sum(z, z);
|
|---|
| 80 | }
|
|---|
| 81 |
|
|---|
| 82 | PyDoc_STRVAR(c_asinh_doc,
|
|---|
| 83 | "asinh(x)\n"
|
|---|
| 84 | "\n"
|
|---|
| 85 | "Return the hyperbolic arc sine of x.");
|
|---|
| 86 |
|
|---|
| 87 |
|
|---|
| 88 | static Py_complex
|
|---|
| 89 | c_atan(Py_complex x)
|
|---|
| 90 | {
|
|---|
| 91 | return c_prod(c_halfi,c_log(c_quot(c_sum(c_i,x),c_diff(c_i,x))));
|
|---|
| 92 | }
|
|---|
| 93 |
|
|---|
| 94 | PyDoc_STRVAR(c_atan_doc,
|
|---|
| 95 | "atan(x)\n"
|
|---|
| 96 | "\n"
|
|---|
| 97 | "Return the arc tangent of x.");
|
|---|
| 98 |
|
|---|
| 99 |
|
|---|
| 100 | static Py_complex
|
|---|
| 101 | c_atanh(Py_complex x)
|
|---|
| 102 | {
|
|---|
| 103 | return c_prod(c_half,c_log(c_quot(c_sum(c_one,x),c_diff(c_one,x))));
|
|---|
| 104 | }
|
|---|
| 105 |
|
|---|
| 106 | PyDoc_STRVAR(c_atanh_doc,
|
|---|
| 107 | "atanh(x)\n"
|
|---|
| 108 | "\n"
|
|---|
| 109 | "Return the hyperbolic arc tangent of x.");
|
|---|
| 110 |
|
|---|
| 111 |
|
|---|
| 112 | static Py_complex
|
|---|
| 113 | c_cos(Py_complex x)
|
|---|
| 114 | {
|
|---|
| 115 | Py_complex r;
|
|---|
| 116 | r.real = cos(x.real)*cosh(x.imag);
|
|---|
| 117 | r.imag = -sin(x.real)*sinh(x.imag);
|
|---|
| 118 | return r;
|
|---|
| 119 | }
|
|---|
| 120 |
|
|---|
| 121 | PyDoc_STRVAR(c_cos_doc,
|
|---|
| 122 | "cos(x)\n"
|
|---|
| 123 | "n"
|
|---|
| 124 | "Return the cosine of x.");
|
|---|
| 125 |
|
|---|
| 126 |
|
|---|
| 127 | static Py_complex
|
|---|
| 128 | c_cosh(Py_complex x)
|
|---|
| 129 | {
|
|---|
| 130 | Py_complex r;
|
|---|
| 131 | r.real = cos(x.imag)*cosh(x.real);
|
|---|
| 132 | r.imag = sin(x.imag)*sinh(x.real);
|
|---|
| 133 | return r;
|
|---|
| 134 | }
|
|---|
| 135 |
|
|---|
| 136 | PyDoc_STRVAR(c_cosh_doc,
|
|---|
| 137 | "cosh(x)\n"
|
|---|
| 138 | "n"
|
|---|
| 139 | "Return the hyperbolic cosine of x.");
|
|---|
| 140 |
|
|---|
| 141 |
|
|---|
| 142 | static Py_complex
|
|---|
| 143 | c_exp(Py_complex x)
|
|---|
| 144 | {
|
|---|
| 145 | Py_complex r;
|
|---|
| 146 | double l = exp(x.real);
|
|---|
| 147 | r.real = l*cos(x.imag);
|
|---|
| 148 | r.imag = l*sin(x.imag);
|
|---|
| 149 | return r;
|
|---|
| 150 | }
|
|---|
| 151 |
|
|---|
| 152 | PyDoc_STRVAR(c_exp_doc,
|
|---|
| 153 | "exp(x)\n"
|
|---|
| 154 | "\n"
|
|---|
| 155 | "Return the exponential value e**x.");
|
|---|
| 156 |
|
|---|
| 157 |
|
|---|
| 158 | static Py_complex
|
|---|
| 159 | c_log(Py_complex x)
|
|---|
| 160 | {
|
|---|
| 161 | Py_complex r;
|
|---|
| 162 | double l = hypot(x.real,x.imag);
|
|---|
| 163 | r.imag = atan2(x.imag, x.real);
|
|---|
| 164 | r.real = log(l);
|
|---|
| 165 | return r;
|
|---|
| 166 | }
|
|---|
| 167 |
|
|---|
| 168 |
|
|---|
| 169 | static Py_complex
|
|---|
| 170 | c_log10(Py_complex x)
|
|---|
| 171 | {
|
|---|
| 172 | Py_complex r;
|
|---|
| 173 | double l = hypot(x.real,x.imag);
|
|---|
| 174 | r.imag = atan2(x.imag, x.real)/log(10.);
|
|---|
| 175 | r.real = log10(l);
|
|---|
| 176 | return r;
|
|---|
| 177 | }
|
|---|
| 178 |
|
|---|
| 179 | PyDoc_STRVAR(c_log10_doc,
|
|---|
| 180 | "log10(x)\n"
|
|---|
| 181 | "\n"
|
|---|
| 182 | "Return the base-10 logarithm of x.");
|
|---|
| 183 |
|
|---|
| 184 |
|
|---|
| 185 | /* internal function not available from Python */
|
|---|
| 186 | static Py_complex
|
|---|
| 187 | c_prodi(Py_complex x)
|
|---|
| 188 | {
|
|---|
| 189 | Py_complex r;
|
|---|
| 190 | r.real = -x.imag;
|
|---|
| 191 | r.imag = x.real;
|
|---|
| 192 | return r;
|
|---|
| 193 | }
|
|---|
| 194 |
|
|---|
| 195 |
|
|---|
| 196 | static Py_complex
|
|---|
| 197 | c_sin(Py_complex x)
|
|---|
| 198 | {
|
|---|
| 199 | Py_complex r;
|
|---|
| 200 | r.real = sin(x.real) * cosh(x.imag);
|
|---|
| 201 | r.imag = cos(x.real) * sinh(x.imag);
|
|---|
| 202 | return r;
|
|---|
| 203 | }
|
|---|
| 204 |
|
|---|
| 205 | PyDoc_STRVAR(c_sin_doc,
|
|---|
| 206 | "sin(x)\n"
|
|---|
| 207 | "\n"
|
|---|
| 208 | "Return the sine of x.");
|
|---|
| 209 |
|
|---|
| 210 |
|
|---|
| 211 | static Py_complex
|
|---|
| 212 | c_sinh(Py_complex x)
|
|---|
| 213 | {
|
|---|
| 214 | Py_complex r;
|
|---|
| 215 | r.real = cos(x.imag) * sinh(x.real);
|
|---|
| 216 | r.imag = sin(x.imag) * cosh(x.real);
|
|---|
| 217 | return r;
|
|---|
| 218 | }
|
|---|
| 219 |
|
|---|
| 220 | PyDoc_STRVAR(c_sinh_doc,
|
|---|
| 221 | "sinh(x)\n"
|
|---|
| 222 | "\n"
|
|---|
| 223 | "Return the hyperbolic sine of x.");
|
|---|
| 224 |
|
|---|
| 225 |
|
|---|
| 226 | static Py_complex
|
|---|
| 227 | c_sqrt(Py_complex x)
|
|---|
| 228 | {
|
|---|
| 229 | Py_complex r;
|
|---|
| 230 | double s,d;
|
|---|
| 231 | if (x.real == 0. && x.imag == 0.)
|
|---|
| 232 | r = x;
|
|---|
| 233 | else {
|
|---|
| 234 | s = sqrt(0.5*(fabs(x.real) + hypot(x.real,x.imag)));
|
|---|
| 235 | d = 0.5*x.imag/s;
|
|---|
| 236 | if (x.real > 0.) {
|
|---|
| 237 | r.real = s;
|
|---|
| 238 | r.imag = d;
|
|---|
| 239 | }
|
|---|
| 240 | else if (x.imag >= 0.) {
|
|---|
| 241 | r.real = d;
|
|---|
| 242 | r.imag = s;
|
|---|
| 243 | }
|
|---|
| 244 | else {
|
|---|
| 245 | r.real = -d;
|
|---|
| 246 | r.imag = -s;
|
|---|
| 247 | }
|
|---|
| 248 | }
|
|---|
| 249 | return r;
|
|---|
| 250 | }
|
|---|
| 251 |
|
|---|
| 252 | PyDoc_STRVAR(c_sqrt_doc,
|
|---|
| 253 | "sqrt(x)\n"
|
|---|
| 254 | "\n"
|
|---|
| 255 | "Return the square root of x.");
|
|---|
| 256 |
|
|---|
| 257 |
|
|---|
| 258 | static Py_complex
|
|---|
| 259 | c_tan(Py_complex x)
|
|---|
| 260 | {
|
|---|
| 261 | Py_complex r;
|
|---|
| 262 | double sr,cr,shi,chi;
|
|---|
| 263 | double rs,is,rc,ic;
|
|---|
| 264 | double d;
|
|---|
| 265 | sr = sin(x.real);
|
|---|
| 266 | cr = cos(x.real);
|
|---|
| 267 | shi = sinh(x.imag);
|
|---|
| 268 | chi = cosh(x.imag);
|
|---|
| 269 | rs = sr * chi;
|
|---|
| 270 | is = cr * shi;
|
|---|
| 271 | rc = cr * chi;
|
|---|
| 272 | ic = -sr * shi;
|
|---|
| 273 | d = rc*rc + ic * ic;
|
|---|
| 274 | r.real = (rs*rc + is*ic) / d;
|
|---|
| 275 | r.imag = (is*rc - rs*ic) / d;
|
|---|
| 276 | return r;
|
|---|
| 277 | }
|
|---|
| 278 |
|
|---|
| 279 | PyDoc_STRVAR(c_tan_doc,
|
|---|
| 280 | "tan(x)\n"
|
|---|
| 281 | "\n"
|
|---|
| 282 | "Return the tangent of x.");
|
|---|
| 283 |
|
|---|
| 284 |
|
|---|
| 285 | static Py_complex
|
|---|
| 286 | c_tanh(Py_complex x)
|
|---|
| 287 | {
|
|---|
| 288 | Py_complex r;
|
|---|
| 289 | double si,ci,shr,chr;
|
|---|
| 290 | double rs,is,rc,ic;
|
|---|
| 291 | double d;
|
|---|
| 292 | si = sin(x.imag);
|
|---|
| 293 | ci = cos(x.imag);
|
|---|
| 294 | shr = sinh(x.real);
|
|---|
| 295 | chr = cosh(x.real);
|
|---|
| 296 | rs = ci * shr;
|
|---|
| 297 | is = si * chr;
|
|---|
| 298 | rc = ci * chr;
|
|---|
| 299 | ic = si * shr;
|
|---|
| 300 | d = rc*rc + ic*ic;
|
|---|
| 301 | r.real = (rs*rc + is*ic) / d;
|
|---|
| 302 | r.imag = (is*rc - rs*ic) / d;
|
|---|
| 303 | return r;
|
|---|
| 304 | }
|
|---|
| 305 |
|
|---|
| 306 | PyDoc_STRVAR(c_tanh_doc,
|
|---|
| 307 | "tanh(x)\n"
|
|---|
| 308 | "\n"
|
|---|
| 309 | "Return the hyperbolic tangent of x.");
|
|---|
| 310 |
|
|---|
| 311 | static PyObject *
|
|---|
| 312 | cmath_log(PyObject *self, PyObject *args)
|
|---|
| 313 | {
|
|---|
| 314 | Py_complex x;
|
|---|
| 315 | Py_complex y;
|
|---|
| 316 |
|
|---|
| 317 | if (!PyArg_ParseTuple(args, "D|D", &x, &y))
|
|---|
| 318 | return NULL;
|
|---|
| 319 |
|
|---|
| 320 | errno = 0;
|
|---|
| 321 | PyFPE_START_PROTECT("complex function", return 0)
|
|---|
| 322 | x = c_log(x);
|
|---|
| 323 | if (PyTuple_GET_SIZE(args) == 2)
|
|---|
| 324 | x = c_quot(x, c_log(y));
|
|---|
| 325 | PyFPE_END_PROTECT(x)
|
|---|
| 326 | if (errno != 0)
|
|---|
| 327 | return math_error();
|
|---|
| 328 | Py_ADJUST_ERANGE2(x.real, x.imag);
|
|---|
| 329 | return PyComplex_FromCComplex(x);
|
|---|
| 330 | }
|
|---|
| 331 |
|
|---|
| 332 | PyDoc_STRVAR(cmath_log_doc,
|
|---|
| 333 | "log(x[, base]) -> the logarithm of x to the given base.\n\
|
|---|
| 334 | If the base not specified, returns the natural logarithm (base e) of x.");
|
|---|
| 335 |
|
|---|
| 336 |
|
|---|
| 337 | /* And now the glue to make them available from Python: */
|
|---|
| 338 |
|
|---|
| 339 | static PyObject *
|
|---|
| 340 | math_error(void)
|
|---|
| 341 | {
|
|---|
| 342 | if (errno == EDOM)
|
|---|
| 343 | PyErr_SetString(PyExc_ValueError, "math domain error");
|
|---|
| 344 | else if (errno == ERANGE)
|
|---|
| 345 | PyErr_SetString(PyExc_OverflowError, "math range error");
|
|---|
| 346 | else /* Unexpected math error */
|
|---|
| 347 | PyErr_SetFromErrno(PyExc_ValueError);
|
|---|
| 348 | return NULL;
|
|---|
| 349 | }
|
|---|
| 350 |
|
|---|
| 351 | static PyObject *
|
|---|
| 352 | math_1(PyObject *args, Py_complex (*func)(Py_complex))
|
|---|
| 353 | {
|
|---|
| 354 | Py_complex x;
|
|---|
| 355 | if (!PyArg_ParseTuple(args, "D", &x))
|
|---|
| 356 | return NULL;
|
|---|
| 357 | errno = 0;
|
|---|
| 358 | PyFPE_START_PROTECT("complex function", return 0)
|
|---|
| 359 | x = (*func)(x);
|
|---|
| 360 | PyFPE_END_PROTECT(x)
|
|---|
| 361 | Py_ADJUST_ERANGE2(x.real, x.imag);
|
|---|
| 362 | if (errno != 0)
|
|---|
| 363 | return math_error();
|
|---|
| 364 | else
|
|---|
| 365 | return PyComplex_FromCComplex(x);
|
|---|
| 366 | }
|
|---|
| 367 |
|
|---|
| 368 | #define FUNC1(stubname, func) \
|
|---|
| 369 | static PyObject * stubname(PyObject *self, PyObject *args) { \
|
|---|
| 370 | return math_1(args, func); \
|
|---|
| 371 | }
|
|---|
| 372 |
|
|---|
| 373 | FUNC1(cmath_acos, c_acos)
|
|---|
| 374 | FUNC1(cmath_acosh, c_acosh)
|
|---|
| 375 | FUNC1(cmath_asin, c_asin)
|
|---|
| 376 | FUNC1(cmath_asinh, c_asinh)
|
|---|
| 377 | FUNC1(cmath_atan, c_atan)
|
|---|
| 378 | FUNC1(cmath_atanh, c_atanh)
|
|---|
| 379 | FUNC1(cmath_cos, c_cos)
|
|---|
| 380 | FUNC1(cmath_cosh, c_cosh)
|
|---|
| 381 | FUNC1(cmath_exp, c_exp)
|
|---|
| 382 | FUNC1(cmath_log10, c_log10)
|
|---|
| 383 | FUNC1(cmath_sin, c_sin)
|
|---|
| 384 | FUNC1(cmath_sinh, c_sinh)
|
|---|
| 385 | FUNC1(cmath_sqrt, c_sqrt)
|
|---|
| 386 | FUNC1(cmath_tan, c_tan)
|
|---|
| 387 | FUNC1(cmath_tanh, c_tanh)
|
|---|
| 388 |
|
|---|
| 389 |
|
|---|
| 390 | PyDoc_STRVAR(module_doc,
|
|---|
| 391 | "This module is always available. It provides access to mathematical\n"
|
|---|
| 392 | "functions for complex numbers.");
|
|---|
| 393 |
|
|---|
| 394 | static PyMethodDef cmath_methods[] = {
|
|---|
| 395 | {"acos", cmath_acos, METH_VARARGS, c_acos_doc},
|
|---|
| 396 | {"acosh", cmath_acosh, METH_VARARGS, c_acosh_doc},
|
|---|
| 397 | {"asin", cmath_asin, METH_VARARGS, c_asin_doc},
|
|---|
| 398 | {"asinh", cmath_asinh, METH_VARARGS, c_asinh_doc},
|
|---|
| 399 | {"atan", cmath_atan, METH_VARARGS, c_atan_doc},
|
|---|
| 400 | {"atanh", cmath_atanh, METH_VARARGS, c_atanh_doc},
|
|---|
| 401 | {"cos", cmath_cos, METH_VARARGS, c_cos_doc},
|
|---|
| 402 | {"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc},
|
|---|
| 403 | {"exp", cmath_exp, METH_VARARGS, c_exp_doc},
|
|---|
| 404 | {"log", cmath_log, METH_VARARGS, cmath_log_doc},
|
|---|
| 405 | {"log10", cmath_log10, METH_VARARGS, c_log10_doc},
|
|---|
| 406 | {"sin", cmath_sin, METH_VARARGS, c_sin_doc},
|
|---|
| 407 | {"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc},
|
|---|
| 408 | {"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc},
|
|---|
| 409 | {"tan", cmath_tan, METH_VARARGS, c_tan_doc},
|
|---|
| 410 | {"tanh", cmath_tanh, METH_VARARGS, c_tanh_doc},
|
|---|
| 411 | {NULL, NULL} /* sentinel */
|
|---|
| 412 | };
|
|---|
| 413 |
|
|---|
| 414 | PyMODINIT_FUNC
|
|---|
| 415 | initcmath(void)
|
|---|
| 416 | {
|
|---|
| 417 | PyObject *m;
|
|---|
| 418 |
|
|---|
| 419 | m = Py_InitModule3("cmath", cmath_methods, module_doc);
|
|---|
| 420 | if (m == NULL)
|
|---|
| 421 | return;
|
|---|
| 422 |
|
|---|
| 423 | PyModule_AddObject(m, "pi",
|
|---|
| 424 | PyFloat_FromDouble(atan(1.0) * 4.0));
|
|---|
| 425 | PyModule_AddObject(m, "e", PyFloat_FromDouble(exp(1.0)));
|
|---|
| 426 | }
|
|---|