| 1 | /* Drop in replacement for heapq.py
|
|---|
| 2 |
|
|---|
| 3 | C implementation derived directly from heapq.py in Py2.3
|
|---|
| 4 | which was written by Kevin O'Connor, augmented by Tim Peters,
|
|---|
| 5 | annotated by François Pinard, and converted to C by Raymond Hettinger.
|
|---|
| 6 |
|
|---|
| 7 | */
|
|---|
| 8 |
|
|---|
| 9 | #include "Python.h"
|
|---|
| 10 |
|
|---|
| 11 | static int
|
|---|
| 12 | _siftdown(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos)
|
|---|
| 13 | {
|
|---|
| 14 | PyObject *newitem, *parent;
|
|---|
| 15 | int cmp;
|
|---|
| 16 | Py_ssize_t parentpos;
|
|---|
| 17 |
|
|---|
| 18 | assert(PyList_Check(heap));
|
|---|
| 19 | if (pos >= PyList_GET_SIZE(heap)) {
|
|---|
| 20 | PyErr_SetString(PyExc_IndexError, "index out of range");
|
|---|
| 21 | return -1;
|
|---|
| 22 | }
|
|---|
| 23 |
|
|---|
| 24 | newitem = PyList_GET_ITEM(heap, pos);
|
|---|
| 25 | Py_INCREF(newitem);
|
|---|
| 26 | /* Follow the path to the root, moving parents down until finding
|
|---|
| 27 | a place newitem fits. */
|
|---|
| 28 | while (pos > startpos){
|
|---|
| 29 | parentpos = (pos - 1) >> 1;
|
|---|
| 30 | parent = PyList_GET_ITEM(heap, parentpos);
|
|---|
| 31 | cmp = PyObject_RichCompareBool(parent, newitem, Py_LE);
|
|---|
| 32 | if (cmp == -1) {
|
|---|
| 33 | Py_DECREF(newitem);
|
|---|
| 34 | return -1;
|
|---|
| 35 | }
|
|---|
| 36 | if (cmp == 1)
|
|---|
| 37 | break;
|
|---|
| 38 | Py_INCREF(parent);
|
|---|
| 39 | Py_DECREF(PyList_GET_ITEM(heap, pos));
|
|---|
| 40 | PyList_SET_ITEM(heap, pos, parent);
|
|---|
| 41 | pos = parentpos;
|
|---|
| 42 | }
|
|---|
| 43 | Py_DECREF(PyList_GET_ITEM(heap, pos));
|
|---|
| 44 | PyList_SET_ITEM(heap, pos, newitem);
|
|---|
| 45 | return 0;
|
|---|
| 46 | }
|
|---|
| 47 |
|
|---|
| 48 | static int
|
|---|
| 49 | _siftup(PyListObject *heap, Py_ssize_t pos)
|
|---|
| 50 | {
|
|---|
| 51 | Py_ssize_t startpos, endpos, childpos, rightpos;
|
|---|
| 52 | int cmp;
|
|---|
| 53 | PyObject *newitem, *tmp;
|
|---|
| 54 |
|
|---|
| 55 | assert(PyList_Check(heap));
|
|---|
| 56 | endpos = PyList_GET_SIZE(heap);
|
|---|
| 57 | startpos = pos;
|
|---|
| 58 | if (pos >= endpos) {
|
|---|
| 59 | PyErr_SetString(PyExc_IndexError, "index out of range");
|
|---|
| 60 | return -1;
|
|---|
| 61 | }
|
|---|
| 62 | newitem = PyList_GET_ITEM(heap, pos);
|
|---|
| 63 | Py_INCREF(newitem);
|
|---|
| 64 |
|
|---|
| 65 | /* Bubble up the smaller child until hitting a leaf. */
|
|---|
| 66 | childpos = 2*pos + 1; /* leftmost child position */
|
|---|
| 67 | while (childpos < endpos) {
|
|---|
| 68 | /* Set childpos to index of smaller child. */
|
|---|
| 69 | rightpos = childpos + 1;
|
|---|
| 70 | if (rightpos < endpos) {
|
|---|
| 71 | cmp = PyObject_RichCompareBool(
|
|---|
| 72 | PyList_GET_ITEM(heap, rightpos),
|
|---|
| 73 | PyList_GET_ITEM(heap, childpos),
|
|---|
| 74 | Py_LE);
|
|---|
| 75 | if (cmp == -1) {
|
|---|
| 76 | Py_DECREF(newitem);
|
|---|
| 77 | return -1;
|
|---|
| 78 | }
|
|---|
| 79 | if (cmp == 1)
|
|---|
| 80 | childpos = rightpos;
|
|---|
| 81 | }
|
|---|
| 82 | /* Move the smaller child up. */
|
|---|
| 83 | tmp = PyList_GET_ITEM(heap, childpos);
|
|---|
| 84 | Py_INCREF(tmp);
|
|---|
| 85 | Py_DECREF(PyList_GET_ITEM(heap, pos));
|
|---|
| 86 | PyList_SET_ITEM(heap, pos, tmp);
|
|---|
| 87 | pos = childpos;
|
|---|
| 88 | childpos = 2*pos + 1;
|
|---|
| 89 | }
|
|---|
| 90 |
|
|---|
| 91 | /* The leaf at pos is empty now. Put newitem there, and and bubble
|
|---|
| 92 | it up to its final resting place (by sifting its parents down). */
|
|---|
| 93 | Py_DECREF(PyList_GET_ITEM(heap, pos));
|
|---|
| 94 | PyList_SET_ITEM(heap, pos, newitem);
|
|---|
| 95 | return _siftdown(heap, startpos, pos);
|
|---|
| 96 | }
|
|---|
| 97 |
|
|---|
| 98 | static PyObject *
|
|---|
| 99 | heappush(PyObject *self, PyObject *args)
|
|---|
| 100 | {
|
|---|
| 101 | PyObject *heap, *item;
|
|---|
| 102 |
|
|---|
| 103 | if (!PyArg_UnpackTuple(args, "heappush", 2, 2, &heap, &item))
|
|---|
| 104 | return NULL;
|
|---|
| 105 |
|
|---|
| 106 | if (!PyList_Check(heap)) {
|
|---|
| 107 | PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
|
|---|
| 108 | return NULL;
|
|---|
| 109 | }
|
|---|
| 110 |
|
|---|
| 111 | if (PyList_Append(heap, item) == -1)
|
|---|
| 112 | return NULL;
|
|---|
| 113 |
|
|---|
| 114 | if (_siftdown((PyListObject *)heap, 0, PyList_GET_SIZE(heap)-1) == -1)
|
|---|
| 115 | return NULL;
|
|---|
| 116 | Py_INCREF(Py_None);
|
|---|
| 117 | return Py_None;
|
|---|
| 118 | }
|
|---|
| 119 |
|
|---|
| 120 | PyDoc_STRVAR(heappush_doc,
|
|---|
| 121 | "Push item onto heap, maintaining the heap invariant.");
|
|---|
| 122 |
|
|---|
| 123 | static PyObject *
|
|---|
| 124 | heappop(PyObject *self, PyObject *heap)
|
|---|
| 125 | {
|
|---|
| 126 | PyObject *lastelt, *returnitem;
|
|---|
| 127 | Py_ssize_t n;
|
|---|
| 128 |
|
|---|
| 129 | if (!PyList_Check(heap)) {
|
|---|
| 130 | PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
|
|---|
| 131 | return NULL;
|
|---|
| 132 | }
|
|---|
| 133 |
|
|---|
| 134 | /* # raises appropriate IndexError if heap is empty */
|
|---|
| 135 | n = PyList_GET_SIZE(heap);
|
|---|
| 136 | if (n == 0) {
|
|---|
| 137 | PyErr_SetString(PyExc_IndexError, "index out of range");
|
|---|
| 138 | return NULL;
|
|---|
| 139 | }
|
|---|
| 140 |
|
|---|
| 141 | lastelt = PyList_GET_ITEM(heap, n-1) ;
|
|---|
| 142 | Py_INCREF(lastelt);
|
|---|
| 143 | PyList_SetSlice(heap, n-1, n, NULL);
|
|---|
| 144 | n--;
|
|---|
| 145 |
|
|---|
| 146 | if (!n)
|
|---|
| 147 | return lastelt;
|
|---|
| 148 | returnitem = PyList_GET_ITEM(heap, 0);
|
|---|
| 149 | PyList_SET_ITEM(heap, 0, lastelt);
|
|---|
| 150 | if (_siftup((PyListObject *)heap, 0) == -1) {
|
|---|
| 151 | Py_DECREF(returnitem);
|
|---|
| 152 | return NULL;
|
|---|
| 153 | }
|
|---|
| 154 | return returnitem;
|
|---|
| 155 | }
|
|---|
| 156 |
|
|---|
| 157 | PyDoc_STRVAR(heappop_doc,
|
|---|
| 158 | "Pop the smallest item off the heap, maintaining the heap invariant.");
|
|---|
| 159 |
|
|---|
| 160 | static PyObject *
|
|---|
| 161 | heapreplace(PyObject *self, PyObject *args)
|
|---|
| 162 | {
|
|---|
| 163 | PyObject *heap, *item, *returnitem;
|
|---|
| 164 |
|
|---|
| 165 | if (!PyArg_UnpackTuple(args, "heapreplace", 2, 2, &heap, &item))
|
|---|
| 166 | return NULL;
|
|---|
| 167 |
|
|---|
| 168 | if (!PyList_Check(heap)) {
|
|---|
| 169 | PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
|
|---|
| 170 | return NULL;
|
|---|
| 171 | }
|
|---|
| 172 |
|
|---|
| 173 | if (PyList_GET_SIZE(heap) < 1) {
|
|---|
| 174 | PyErr_SetString(PyExc_IndexError, "index out of range");
|
|---|
| 175 | return NULL;
|
|---|
| 176 | }
|
|---|
| 177 |
|
|---|
| 178 | returnitem = PyList_GET_ITEM(heap, 0);
|
|---|
| 179 | Py_INCREF(item);
|
|---|
| 180 | PyList_SET_ITEM(heap, 0, item);
|
|---|
| 181 | if (_siftup((PyListObject *)heap, 0) == -1) {
|
|---|
| 182 | Py_DECREF(returnitem);
|
|---|
| 183 | return NULL;
|
|---|
| 184 | }
|
|---|
| 185 | return returnitem;
|
|---|
| 186 | }
|
|---|
| 187 |
|
|---|
| 188 | PyDoc_STRVAR(heapreplace_doc,
|
|---|
| 189 | "Pop and return the current smallest value, and add the new item.\n\
|
|---|
| 190 | \n\
|
|---|
| 191 | This is more efficient than heappop() followed by heappush(), and can be\n\
|
|---|
| 192 | more appropriate when using a fixed-size heap. Note that the value\n\
|
|---|
| 193 | returned may be larger than item! That constrains reasonable uses of\n\
|
|---|
| 194 | this routine unless written as part of a conditional replacement:\n\n\
|
|---|
| 195 | if item > heap[0]:\n\
|
|---|
| 196 | item = heapreplace(heap, item)\n");
|
|---|
| 197 |
|
|---|
| 198 | static PyObject *
|
|---|
| 199 | heapify(PyObject *self, PyObject *heap)
|
|---|
| 200 | {
|
|---|
| 201 | Py_ssize_t i, n;
|
|---|
| 202 |
|
|---|
| 203 | if (!PyList_Check(heap)) {
|
|---|
| 204 | PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
|
|---|
| 205 | return NULL;
|
|---|
| 206 | }
|
|---|
| 207 |
|
|---|
| 208 | n = PyList_GET_SIZE(heap);
|
|---|
| 209 | /* Transform bottom-up. The largest index there's any point to
|
|---|
| 210 | looking at is the largest with a child index in-range, so must
|
|---|
| 211 | have 2*i + 1 < n, or i < (n-1)/2. If n is even = 2*j, this is
|
|---|
| 212 | (2*j-1)/2 = j-1/2 so j-1 is the largest, which is n//2 - 1. If
|
|---|
| 213 | n is odd = 2*j+1, this is (2*j+1-1)/2 = j so j-1 is the largest,
|
|---|
| 214 | and that's again n//2-1.
|
|---|
| 215 | */
|
|---|
| 216 | for (i=n/2-1 ; i>=0 ; i--)
|
|---|
| 217 | if(_siftup((PyListObject *)heap, i) == -1)
|
|---|
| 218 | return NULL;
|
|---|
| 219 | Py_INCREF(Py_None);
|
|---|
| 220 | return Py_None;
|
|---|
| 221 | }
|
|---|
| 222 |
|
|---|
| 223 | PyDoc_STRVAR(heapify_doc,
|
|---|
| 224 | "Transform list into a heap, in-place, in O(len(heap)) time.");
|
|---|
| 225 |
|
|---|
| 226 | static PyObject *
|
|---|
| 227 | nlargest(PyObject *self, PyObject *args)
|
|---|
| 228 | {
|
|---|
| 229 | PyObject *heap=NULL, *elem, *iterable, *sol, *it, *oldelem;
|
|---|
| 230 | Py_ssize_t i, n;
|
|---|
| 231 |
|
|---|
| 232 | if (!PyArg_ParseTuple(args, "nO:nlargest", &n, &iterable))
|
|---|
| 233 | return NULL;
|
|---|
| 234 |
|
|---|
| 235 | it = PyObject_GetIter(iterable);
|
|---|
| 236 | if (it == NULL)
|
|---|
| 237 | return NULL;
|
|---|
| 238 |
|
|---|
| 239 | heap = PyList_New(0);
|
|---|
| 240 | if (heap == NULL)
|
|---|
| 241 | goto fail;
|
|---|
| 242 |
|
|---|
| 243 | for (i=0 ; i<n ; i++ ){
|
|---|
| 244 | elem = PyIter_Next(it);
|
|---|
| 245 | if (elem == NULL) {
|
|---|
| 246 | if (PyErr_Occurred())
|
|---|
| 247 | goto fail;
|
|---|
| 248 | else
|
|---|
| 249 | goto sortit;
|
|---|
| 250 | }
|
|---|
| 251 | if (PyList_Append(heap, elem) == -1) {
|
|---|
| 252 | Py_DECREF(elem);
|
|---|
| 253 | goto fail;
|
|---|
| 254 | }
|
|---|
| 255 | Py_DECREF(elem);
|
|---|
| 256 | }
|
|---|
| 257 | if (PyList_GET_SIZE(heap) == 0)
|
|---|
| 258 | goto sortit;
|
|---|
| 259 |
|
|---|
| 260 | for (i=n/2-1 ; i>=0 ; i--)
|
|---|
| 261 | if(_siftup((PyListObject *)heap, i) == -1)
|
|---|
| 262 | goto fail;
|
|---|
| 263 |
|
|---|
| 264 | sol = PyList_GET_ITEM(heap, 0);
|
|---|
| 265 | while (1) {
|
|---|
| 266 | elem = PyIter_Next(it);
|
|---|
| 267 | if (elem == NULL) {
|
|---|
| 268 | if (PyErr_Occurred())
|
|---|
| 269 | goto fail;
|
|---|
| 270 | else
|
|---|
| 271 | goto sortit;
|
|---|
| 272 | }
|
|---|
| 273 | if (PyObject_RichCompareBool(elem, sol, Py_LE)) {
|
|---|
| 274 | Py_DECREF(elem);
|
|---|
| 275 | continue;
|
|---|
| 276 | }
|
|---|
| 277 | oldelem = PyList_GET_ITEM(heap, 0);
|
|---|
| 278 | PyList_SET_ITEM(heap, 0, elem);
|
|---|
| 279 | Py_DECREF(oldelem);
|
|---|
| 280 | if (_siftup((PyListObject *)heap, 0) == -1)
|
|---|
| 281 | goto fail;
|
|---|
| 282 | sol = PyList_GET_ITEM(heap, 0);
|
|---|
| 283 | }
|
|---|
| 284 | sortit:
|
|---|
| 285 | if (PyList_Sort(heap) == -1)
|
|---|
| 286 | goto fail;
|
|---|
| 287 | if (PyList_Reverse(heap) == -1)
|
|---|
| 288 | goto fail;
|
|---|
| 289 | Py_DECREF(it);
|
|---|
| 290 | return heap;
|
|---|
| 291 |
|
|---|
| 292 | fail:
|
|---|
| 293 | Py_DECREF(it);
|
|---|
| 294 | Py_XDECREF(heap);
|
|---|
| 295 | return NULL;
|
|---|
| 296 | }
|
|---|
| 297 |
|
|---|
| 298 | PyDoc_STRVAR(nlargest_doc,
|
|---|
| 299 | "Find the n largest elements in a dataset.\n\
|
|---|
| 300 | \n\
|
|---|
| 301 | Equivalent to: sorted(iterable, reverse=True)[:n]\n");
|
|---|
| 302 |
|
|---|
| 303 | static int
|
|---|
| 304 | _siftdownmax(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos)
|
|---|
| 305 | {
|
|---|
| 306 | PyObject *newitem, *parent;
|
|---|
| 307 | int cmp;
|
|---|
| 308 | Py_ssize_t parentpos;
|
|---|
| 309 |
|
|---|
| 310 | assert(PyList_Check(heap));
|
|---|
| 311 | if (pos >= PyList_GET_SIZE(heap)) {
|
|---|
| 312 | PyErr_SetString(PyExc_IndexError, "index out of range");
|
|---|
| 313 | return -1;
|
|---|
| 314 | }
|
|---|
| 315 |
|
|---|
| 316 | newitem = PyList_GET_ITEM(heap, pos);
|
|---|
| 317 | Py_INCREF(newitem);
|
|---|
| 318 | /* Follow the path to the root, moving parents down until finding
|
|---|
| 319 | a place newitem fits. */
|
|---|
| 320 | while (pos > startpos){
|
|---|
| 321 | parentpos = (pos - 1) >> 1;
|
|---|
| 322 | parent = PyList_GET_ITEM(heap, parentpos);
|
|---|
| 323 | cmp = PyObject_RichCompareBool(newitem, parent, Py_LE);
|
|---|
| 324 | if (cmp == -1) {
|
|---|
| 325 | Py_DECREF(newitem);
|
|---|
| 326 | return -1;
|
|---|
| 327 | }
|
|---|
| 328 | if (cmp == 1)
|
|---|
| 329 | break;
|
|---|
| 330 | Py_INCREF(parent);
|
|---|
| 331 | Py_DECREF(PyList_GET_ITEM(heap, pos));
|
|---|
| 332 | PyList_SET_ITEM(heap, pos, parent);
|
|---|
| 333 | pos = parentpos;
|
|---|
| 334 | }
|
|---|
| 335 | Py_DECREF(PyList_GET_ITEM(heap, pos));
|
|---|
| 336 | PyList_SET_ITEM(heap, pos, newitem);
|
|---|
| 337 | return 0;
|
|---|
| 338 | }
|
|---|
| 339 |
|
|---|
| 340 | static int
|
|---|
| 341 | _siftupmax(PyListObject *heap, Py_ssize_t pos)
|
|---|
| 342 | {
|
|---|
| 343 | Py_ssize_t startpos, endpos, childpos, rightpos;
|
|---|
| 344 | int cmp;
|
|---|
| 345 | PyObject *newitem, *tmp;
|
|---|
| 346 |
|
|---|
| 347 | assert(PyList_Check(heap));
|
|---|
| 348 | endpos = PyList_GET_SIZE(heap);
|
|---|
| 349 | startpos = pos;
|
|---|
| 350 | if (pos >= endpos) {
|
|---|
| 351 | PyErr_SetString(PyExc_IndexError, "index out of range");
|
|---|
| 352 | return -1;
|
|---|
| 353 | }
|
|---|
| 354 | newitem = PyList_GET_ITEM(heap, pos);
|
|---|
| 355 | Py_INCREF(newitem);
|
|---|
| 356 |
|
|---|
| 357 | /* Bubble up the smaller child until hitting a leaf. */
|
|---|
| 358 | childpos = 2*pos + 1; /* leftmost child position */
|
|---|
| 359 | while (childpos < endpos) {
|
|---|
| 360 | /* Set childpos to index of smaller child. */
|
|---|
| 361 | rightpos = childpos + 1;
|
|---|
| 362 | if (rightpos < endpos) {
|
|---|
| 363 | cmp = PyObject_RichCompareBool(
|
|---|
| 364 | PyList_GET_ITEM(heap, childpos),
|
|---|
| 365 | PyList_GET_ITEM(heap, rightpos),
|
|---|
| 366 | Py_LE);
|
|---|
| 367 | if (cmp == -1) {
|
|---|
| 368 | Py_DECREF(newitem);
|
|---|
| 369 | return -1;
|
|---|
| 370 | }
|
|---|
| 371 | if (cmp == 1)
|
|---|
| 372 | childpos = rightpos;
|
|---|
| 373 | }
|
|---|
| 374 | /* Move the smaller child up. */
|
|---|
| 375 | tmp = PyList_GET_ITEM(heap, childpos);
|
|---|
| 376 | Py_INCREF(tmp);
|
|---|
| 377 | Py_DECREF(PyList_GET_ITEM(heap, pos));
|
|---|
| 378 | PyList_SET_ITEM(heap, pos, tmp);
|
|---|
| 379 | pos = childpos;
|
|---|
| 380 | childpos = 2*pos + 1;
|
|---|
| 381 | }
|
|---|
| 382 |
|
|---|
| 383 | /* The leaf at pos is empty now. Put newitem there, and and bubble
|
|---|
| 384 | it up to its final resting place (by sifting its parents down). */
|
|---|
| 385 | Py_DECREF(PyList_GET_ITEM(heap, pos));
|
|---|
| 386 | PyList_SET_ITEM(heap, pos, newitem);
|
|---|
| 387 | return _siftdownmax(heap, startpos, pos);
|
|---|
| 388 | }
|
|---|
| 389 |
|
|---|
| 390 | static PyObject *
|
|---|
| 391 | nsmallest(PyObject *self, PyObject *args)
|
|---|
| 392 | {
|
|---|
| 393 | PyObject *heap=NULL, *elem, *iterable, *los, *it, *oldelem;
|
|---|
| 394 | Py_ssize_t i, n;
|
|---|
| 395 |
|
|---|
| 396 | if (!PyArg_ParseTuple(args, "nO:nsmallest", &n, &iterable))
|
|---|
| 397 | return NULL;
|
|---|
| 398 |
|
|---|
| 399 | it = PyObject_GetIter(iterable);
|
|---|
| 400 | if (it == NULL)
|
|---|
| 401 | return NULL;
|
|---|
| 402 |
|
|---|
| 403 | heap = PyList_New(0);
|
|---|
| 404 | if (heap == NULL)
|
|---|
| 405 | goto fail;
|
|---|
| 406 |
|
|---|
| 407 | for (i=0 ; i<n ; i++ ){
|
|---|
| 408 | elem = PyIter_Next(it);
|
|---|
| 409 | if (elem == NULL) {
|
|---|
| 410 | if (PyErr_Occurred())
|
|---|
| 411 | goto fail;
|
|---|
| 412 | else
|
|---|
| 413 | goto sortit;
|
|---|
| 414 | }
|
|---|
| 415 | if (PyList_Append(heap, elem) == -1) {
|
|---|
| 416 | Py_DECREF(elem);
|
|---|
| 417 | goto fail;
|
|---|
| 418 | }
|
|---|
| 419 | Py_DECREF(elem);
|
|---|
| 420 | }
|
|---|
| 421 | n = PyList_GET_SIZE(heap);
|
|---|
| 422 | if (n == 0)
|
|---|
| 423 | goto sortit;
|
|---|
| 424 |
|
|---|
| 425 | for (i=n/2-1 ; i>=0 ; i--)
|
|---|
| 426 | if(_siftupmax((PyListObject *)heap, i) == -1)
|
|---|
| 427 | goto fail;
|
|---|
| 428 |
|
|---|
| 429 | los = PyList_GET_ITEM(heap, 0);
|
|---|
| 430 | while (1) {
|
|---|
| 431 | elem = PyIter_Next(it);
|
|---|
| 432 | if (elem == NULL) {
|
|---|
| 433 | if (PyErr_Occurred())
|
|---|
| 434 | goto fail;
|
|---|
| 435 | else
|
|---|
| 436 | goto sortit;
|
|---|
| 437 | }
|
|---|
| 438 | if (PyObject_RichCompareBool(los, elem, Py_LE)) {
|
|---|
| 439 | Py_DECREF(elem);
|
|---|
| 440 | continue;
|
|---|
| 441 | }
|
|---|
| 442 |
|
|---|
| 443 | oldelem = PyList_GET_ITEM(heap, 0);
|
|---|
| 444 | PyList_SET_ITEM(heap, 0, elem);
|
|---|
| 445 | Py_DECREF(oldelem);
|
|---|
| 446 | if (_siftupmax((PyListObject *)heap, 0) == -1)
|
|---|
| 447 | goto fail;
|
|---|
| 448 | los = PyList_GET_ITEM(heap, 0);
|
|---|
| 449 | }
|
|---|
| 450 |
|
|---|
| 451 | sortit:
|
|---|
| 452 | if (PyList_Sort(heap) == -1)
|
|---|
| 453 | goto fail;
|
|---|
| 454 | Py_DECREF(it);
|
|---|
| 455 | return heap;
|
|---|
| 456 |
|
|---|
| 457 | fail:
|
|---|
| 458 | Py_DECREF(it);
|
|---|
| 459 | Py_XDECREF(heap);
|
|---|
| 460 | return NULL;
|
|---|
| 461 | }
|
|---|
| 462 |
|
|---|
| 463 | PyDoc_STRVAR(nsmallest_doc,
|
|---|
| 464 | "Find the n smallest elements in a dataset.\n\
|
|---|
| 465 | \n\
|
|---|
| 466 | Equivalent to: sorted(iterable)[:n]\n");
|
|---|
| 467 |
|
|---|
| 468 | static PyMethodDef heapq_methods[] = {
|
|---|
| 469 | {"heappush", (PyCFunction)heappush,
|
|---|
| 470 | METH_VARARGS, heappush_doc},
|
|---|
| 471 | {"heappop", (PyCFunction)heappop,
|
|---|
| 472 | METH_O, heappop_doc},
|
|---|
| 473 | {"heapreplace", (PyCFunction)heapreplace,
|
|---|
| 474 | METH_VARARGS, heapreplace_doc},
|
|---|
| 475 | {"heapify", (PyCFunction)heapify,
|
|---|
| 476 | METH_O, heapify_doc},
|
|---|
| 477 | {"nlargest", (PyCFunction)nlargest,
|
|---|
| 478 | METH_VARARGS, nlargest_doc},
|
|---|
| 479 | {"nsmallest", (PyCFunction)nsmallest,
|
|---|
| 480 | METH_VARARGS, nsmallest_doc},
|
|---|
| 481 | {NULL, NULL} /* sentinel */
|
|---|
| 482 | };
|
|---|
| 483 |
|
|---|
| 484 | PyDoc_STRVAR(module_doc,
|
|---|
| 485 | "Heap queue algorithm (a.k.a. priority queue).\n\
|
|---|
| 486 | \n\
|
|---|
| 487 | Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\
|
|---|
| 488 | all k, counting elements from 0. For the sake of comparison,\n\
|
|---|
| 489 | non-existing elements are considered to be infinite. The interesting\n\
|
|---|
| 490 | property of a heap is that a[0] is always its smallest element.\n\
|
|---|
| 491 | \n\
|
|---|
| 492 | Usage:\n\
|
|---|
| 493 | \n\
|
|---|
| 494 | heap = [] # creates an empty heap\n\
|
|---|
| 495 | heappush(heap, item) # pushes a new item on the heap\n\
|
|---|
| 496 | item = heappop(heap) # pops the smallest item from the heap\n\
|
|---|
| 497 | item = heap[0] # smallest item on the heap without popping it\n\
|
|---|
| 498 | heapify(x) # transforms list into a heap, in-place, in linear time\n\
|
|---|
| 499 | item = heapreplace(heap, item) # pops and returns smallest item, and adds\n\
|
|---|
| 500 | # new item; the heap size is unchanged\n\
|
|---|
| 501 | \n\
|
|---|
| 502 | Our API differs from textbook heap algorithms as follows:\n\
|
|---|
| 503 | \n\
|
|---|
| 504 | - We use 0-based indexing. This makes the relationship between the\n\
|
|---|
| 505 | index for a node and the indexes for its children slightly less\n\
|
|---|
| 506 | obvious, but is more suitable since Python uses 0-based indexing.\n\
|
|---|
| 507 | \n\
|
|---|
| 508 | - Our heappop() method returns the smallest item, not the largest.\n\
|
|---|
| 509 | \n\
|
|---|
| 510 | These two make it possible to view the heap as a regular Python list\n\
|
|---|
| 511 | without surprises: heap[0] is the smallest item, and heap.sort()\n\
|
|---|
| 512 | maintains the heap invariant!\n");
|
|---|
| 513 |
|
|---|
| 514 |
|
|---|
| 515 | PyDoc_STRVAR(__about__,
|
|---|
| 516 | "Heap queues\n\
|
|---|
| 517 | \n\
|
|---|
| 518 | [explanation by François Pinard]\n\
|
|---|
| 519 | \n\
|
|---|
| 520 | Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\
|
|---|
| 521 | all k, counting elements from 0. For the sake of comparison,\n\
|
|---|
| 522 | non-existing elements are considered to be infinite. The interesting\n\
|
|---|
| 523 | property of a heap is that a[0] is always its smallest element.\n"
|
|---|
| 524 | "\n\
|
|---|
| 525 | The strange invariant above is meant to be an efficient memory\n\
|
|---|
| 526 | representation for a tournament. The numbers below are `k', not a[k]:\n\
|
|---|
| 527 | \n\
|
|---|
| 528 | 0\n\
|
|---|
| 529 | \n\
|
|---|
| 530 | 1 2\n\
|
|---|
| 531 | \n\
|
|---|
| 532 | 3 4 5 6\n\
|
|---|
| 533 | \n\
|
|---|
| 534 | 7 8 9 10 11 12 13 14\n\
|
|---|
| 535 | \n\
|
|---|
| 536 | 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30\n\
|
|---|
| 537 | \n\
|
|---|
| 538 | \n\
|
|---|
| 539 | In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'. In\n\
|
|---|
| 540 | an usual binary tournament we see in sports, each cell is the winner\n\
|
|---|
| 541 | over the two cells it tops, and we can trace the winner down the tree\n\
|
|---|
| 542 | to see all opponents s/he had. However, in many computer applications\n\
|
|---|
| 543 | of such tournaments, we do not need to trace the history of a winner.\n\
|
|---|
| 544 | To be more memory efficient, when a winner is promoted, we try to\n\
|
|---|
| 545 | replace it by something else at a lower level, and the rule becomes\n\
|
|---|
| 546 | that a cell and the two cells it tops contain three different items,\n\
|
|---|
| 547 | but the top cell \"wins\" over the two topped cells.\n"
|
|---|
| 548 | "\n\
|
|---|
| 549 | If this heap invariant is protected at all time, index 0 is clearly\n\
|
|---|
| 550 | the overall winner. The simplest algorithmic way to remove it and\n\
|
|---|
| 551 | find the \"next\" winner is to move some loser (let's say cell 30 in the\n\
|
|---|
| 552 | diagram above) into the 0 position, and then percolate this new 0 down\n\
|
|---|
| 553 | the tree, exchanging values, until the invariant is re-established.\n\
|
|---|
| 554 | This is clearly logarithmic on the total number of items in the tree.\n\
|
|---|
| 555 | By iterating over all items, you get an O(n ln n) sort.\n"
|
|---|
| 556 | "\n\
|
|---|
| 557 | A nice feature of this sort is that you can efficiently insert new\n\
|
|---|
| 558 | items while the sort is going on, provided that the inserted items are\n\
|
|---|
| 559 | not \"better\" than the last 0'th element you extracted. This is\n\
|
|---|
| 560 | especially useful in simulation contexts, where the tree holds all\n\
|
|---|
| 561 | incoming events, and the \"win\" condition means the smallest scheduled\n\
|
|---|
| 562 | time. When an event schedule other events for execution, they are\n\
|
|---|
| 563 | scheduled into the future, so they can easily go into the heap. So, a\n\
|
|---|
| 564 | heap is a good structure for implementing schedulers (this is what I\n\
|
|---|
| 565 | used for my MIDI sequencer :-).\n"
|
|---|
| 566 | "\n\
|
|---|
| 567 | Various structures for implementing schedulers have been extensively\n\
|
|---|
| 568 | studied, and heaps are good for this, as they are reasonably speedy,\n\
|
|---|
| 569 | the speed is almost constant, and the worst case is not much different\n\
|
|---|
| 570 | than the average case. However, there are other representations which\n\
|
|---|
| 571 | are more efficient overall, yet the worst cases might be terrible.\n"
|
|---|
| 572 | "\n\
|
|---|
| 573 | Heaps are also very useful in big disk sorts. You most probably all\n\
|
|---|
| 574 | know that a big sort implies producing \"runs\" (which are pre-sorted\n\
|
|---|
| 575 | sequences, which size is usually related to the amount of CPU memory),\n\
|
|---|
| 576 | followed by a merging passes for these runs, which merging is often\n\
|
|---|
| 577 | very cleverly organised[1]. It is very important that the initial\n\
|
|---|
| 578 | sort produces the longest runs possible. Tournaments are a good way\n\
|
|---|
| 579 | to that. If, using all the memory available to hold a tournament, you\n\
|
|---|
| 580 | replace and percolate items that happen to fit the current run, you'll\n\
|
|---|
| 581 | produce runs which are twice the size of the memory for random input,\n\
|
|---|
| 582 | and much better for input fuzzily ordered.\n"
|
|---|
| 583 | "\n\
|
|---|
| 584 | Moreover, if you output the 0'th item on disk and get an input which\n\
|
|---|
| 585 | may not fit in the current tournament (because the value \"wins\" over\n\
|
|---|
| 586 | the last output value), it cannot fit in the heap, so the size of the\n\
|
|---|
| 587 | heap decreases. The freed memory could be cleverly reused immediately\n\
|
|---|
| 588 | for progressively building a second heap, which grows at exactly the\n\
|
|---|
| 589 | same rate the first heap is melting. When the first heap completely\n\
|
|---|
| 590 | vanishes, you switch heaps and start a new run. Clever and quite\n\
|
|---|
| 591 | effective!\n\
|
|---|
| 592 | \n\
|
|---|
| 593 | In a word, heaps are useful memory structures to know. I use them in\n\
|
|---|
| 594 | a few applications, and I think it is good to keep a `heap' module\n\
|
|---|
| 595 | around. :-)\n"
|
|---|
| 596 | "\n\
|
|---|
| 597 | --------------------\n\
|
|---|
| 598 | [1] The disk balancing algorithms which are current, nowadays, are\n\
|
|---|
| 599 | more annoying than clever, and this is a consequence of the seeking\n\
|
|---|
| 600 | capabilities of the disks. On devices which cannot seek, like big\n\
|
|---|
| 601 | tape drives, the story was quite different, and one had to be very\n\
|
|---|
| 602 | clever to ensure (far in advance) that each tape movement will be the\n\
|
|---|
| 603 | most effective possible (that is, will best participate at\n\
|
|---|
| 604 | \"progressing\" the merge). Some tapes were even able to read\n\
|
|---|
| 605 | backwards, and this was also used to avoid the rewinding time.\n\
|
|---|
| 606 | Believe me, real good tape sorts were quite spectacular to watch!\n\
|
|---|
| 607 | From all times, sorting has always been a Great Art! :-)\n");
|
|---|
| 608 |
|
|---|
| 609 | PyMODINIT_FUNC
|
|---|
| 610 | init_heapq(void)
|
|---|
| 611 | {
|
|---|
| 612 | PyObject *m;
|
|---|
| 613 |
|
|---|
| 614 | m = Py_InitModule3("_heapq", heapq_methods, module_doc);
|
|---|
| 615 | if (m == NULL)
|
|---|
| 616 | return;
|
|---|
| 617 | PyModule_AddObject(m, "__about__", PyString_FromString(__about__));
|
|---|
| 618 | }
|
|---|
| 619 |
|
|---|