| 1 | \section{\module{sqlite3} ---
|
|---|
| 2 | DB-API 2.0 interface for SQLite databases}
|
|---|
| 3 |
|
|---|
| 4 | \declaremodule{builtin}{sqlite3}
|
|---|
| 5 | \modulesynopsis{A DB-API 2.0 implementation using SQLite 3.x.}
|
|---|
| 6 | \sectionauthor{Gerhard HÀring}{[email protected]}
|
|---|
| 7 | \versionadded{2.5}
|
|---|
| 8 |
|
|---|
| 9 | SQLite is a C library that provides a lightweight disk-based database
|
|---|
| 10 | that doesn't require a separate server process and allows accessing
|
|---|
| 11 | the database using a nonstandard variant of the SQL query language.
|
|---|
| 12 | Some applications can use SQLite for internal data storage. It's also
|
|---|
| 13 | possible to prototype an application using SQLite and then port the
|
|---|
| 14 | code to a larger database such as PostgreSQL or Oracle.
|
|---|
| 15 |
|
|---|
| 16 | pysqlite was written by Gerhard H\"aring and provides a SQL interface
|
|---|
| 17 | compliant with the DB-API 2.0 specification described by
|
|---|
| 18 | \pep{249}.
|
|---|
| 19 |
|
|---|
| 20 | To use the module, you must first create a \class{Connection} object
|
|---|
| 21 | that represents the database. Here the data will be stored in the
|
|---|
| 22 | \file{/tmp/example} file:
|
|---|
| 23 |
|
|---|
| 24 | \begin{verbatim}
|
|---|
| 25 | conn = sqlite3.connect('/tmp/example')
|
|---|
| 26 | \end{verbatim}
|
|---|
| 27 |
|
|---|
| 28 | You can also supply the special name \samp{:memory:} to create
|
|---|
| 29 | a database in RAM.
|
|---|
| 30 |
|
|---|
| 31 | Once you have a \class{Connection}, you can create a \class{Cursor}
|
|---|
| 32 | object and call its \method{execute()} method to perform SQL commands:
|
|---|
| 33 |
|
|---|
| 34 | \begin{verbatim}
|
|---|
| 35 | c = conn.cursor()
|
|---|
| 36 |
|
|---|
| 37 | # Create table
|
|---|
| 38 | c.execute('''create table stocks
|
|---|
| 39 | (date text, trans text, symbol text,
|
|---|
| 40 | qty real, price real)''')
|
|---|
| 41 |
|
|---|
| 42 | # Insert a row of data
|
|---|
| 43 | c.execute("""insert into stocks
|
|---|
| 44 | values ('2006-01-05','BUY','RHAT',100,35.14)""")
|
|---|
| 45 | \end{verbatim}
|
|---|
| 46 |
|
|---|
| 47 | Usually your SQL operations will need to use values from Python
|
|---|
| 48 | variables. You shouldn't assemble your query using Python's string
|
|---|
| 49 | operations because doing so is insecure; it makes your program
|
|---|
| 50 | vulnerable to an SQL injection attack.
|
|---|
| 51 |
|
|---|
| 52 | Instead, use the DB-API's parameter substitution. Put \samp{?} as a
|
|---|
| 53 | placeholder wherever you want to use a value, and then provide a tuple
|
|---|
| 54 | of values as the second argument to the cursor's \method{execute()}
|
|---|
| 55 | method. (Other database modules may use a different placeholder,
|
|---|
| 56 | such as \samp{\%s} or \samp{:1}.) For example:
|
|---|
| 57 |
|
|---|
| 58 | \begin{verbatim}
|
|---|
| 59 | # Never do this -- insecure!
|
|---|
| 60 | symbol = 'IBM'
|
|---|
| 61 | c.execute("... where symbol = '%s'" % symbol)
|
|---|
| 62 |
|
|---|
| 63 | # Do this instead
|
|---|
| 64 | t = (symbol,)
|
|---|
| 65 | c.execute('select * from stocks where symbol=?', t)
|
|---|
| 66 |
|
|---|
| 67 | # Larger example
|
|---|
| 68 | for t in (('2006-03-28', 'BUY', 'IBM', 1000, 45.00),
|
|---|
| 69 | ('2006-04-05', 'BUY', 'MSOFT', 1000, 72.00),
|
|---|
| 70 | ('2006-04-06', 'SELL', 'IBM', 500, 53.00),
|
|---|
| 71 | ):
|
|---|
| 72 | c.execute('insert into stocks values (?,?,?,?,?)', t)
|
|---|
| 73 | \end{verbatim}
|
|---|
| 74 |
|
|---|
| 75 | To retrieve data after executing a SELECT statement, you can either
|
|---|
| 76 | treat the cursor as an iterator, call the cursor's \method{fetchone()}
|
|---|
| 77 | method to retrieve a single matching row,
|
|---|
| 78 | or call \method{fetchall()} to get a list of the matching rows.
|
|---|
| 79 |
|
|---|
| 80 | This example uses the iterator form:
|
|---|
| 81 |
|
|---|
| 82 | \begin{verbatim}
|
|---|
| 83 | >>> c = conn.cursor()
|
|---|
| 84 | >>> c.execute('select * from stocks order by price')
|
|---|
| 85 | >>> for row in c:
|
|---|
| 86 | ... print row
|
|---|
| 87 | ...
|
|---|
| 88 | (u'2006-01-05', u'BUY', u'RHAT', 100, 35.140000000000001)
|
|---|
| 89 | (u'2006-03-28', u'BUY', u'IBM', 1000, 45.0)
|
|---|
| 90 | (u'2006-04-06', u'SELL', u'IBM', 500, 53.0)
|
|---|
| 91 | (u'2006-04-05', u'BUY', u'MSOFT', 1000, 72.0)
|
|---|
| 92 | >>>
|
|---|
| 93 | \end{verbatim}
|
|---|
| 94 |
|
|---|
| 95 | \begin{seealso}
|
|---|
| 96 |
|
|---|
| 97 | \seeurl{http://www.pysqlite.org}
|
|---|
| 98 | {The pysqlite web page.}
|
|---|
| 99 |
|
|---|
| 100 | \seeurl{http://www.sqlite.org}
|
|---|
| 101 | {The SQLite web page; the documentation describes the syntax and the
|
|---|
| 102 | available data types for the supported SQL dialect.}
|
|---|
| 103 |
|
|---|
| 104 | \seepep{249}{Database API Specification 2.0}{PEP written by
|
|---|
| 105 | Marc-Andr\'e Lemburg.}
|
|---|
| 106 |
|
|---|
| 107 | \end{seealso}
|
|---|
| 108 |
|
|---|
| 109 |
|
|---|
| 110 | \subsection{Module functions and constants\label{sqlite3-Module-Contents}}
|
|---|
| 111 |
|
|---|
| 112 | \begin{datadesc}{PARSE_DECLTYPES}
|
|---|
| 113 | This constant is meant to be used with the \var{detect_types} parameter of the
|
|---|
| 114 | \function{connect} function.
|
|---|
| 115 |
|
|---|
| 116 | Setting it makes the \module{sqlite3} module parse the declared type for each column it
|
|---|
| 117 | returns. It will parse out the first word of the declared type, i. e. for
|
|---|
| 118 | "integer primary key", it will parse out "integer". Then for that column, it
|
|---|
| 119 | will look into the converters dictionary and use the converter function
|
|---|
| 120 | registered for that type there. Converter names are case-sensitive!
|
|---|
| 121 | \end{datadesc}
|
|---|
| 122 |
|
|---|
| 123 |
|
|---|
| 124 | \begin{datadesc}{PARSE_COLNAMES}
|
|---|
| 125 | This constant is meant to be used with the \var{detect_types} parameter of the
|
|---|
| 126 | \function{connect} function.
|
|---|
| 127 |
|
|---|
| 128 | Setting this makes the SQLite interface parse the column name for each column
|
|---|
| 129 | it returns. It will look for a string formed [mytype] in there, and then
|
|---|
| 130 | decide that 'mytype' is the type of the column. It will try to find an entry of
|
|---|
| 131 | 'mytype' in the converters dictionary and then use the converter function found
|
|---|
| 132 | there to return the value. The column name found in \member{cursor.description} is only
|
|---|
| 133 | the first word of the column name, i. e. if you use something like
|
|---|
| 134 | \code{'as "x [datetime]"'} in your SQL, then we will parse out everything until the
|
|---|
| 135 | first blank for the column name: the column name would simply be "x".
|
|---|
| 136 | \end{datadesc}
|
|---|
| 137 |
|
|---|
| 138 | \begin{funcdesc}{connect}{database\optional{, timeout, isolation_level, detect_types, factory}}
|
|---|
| 139 | Opens a connection to the SQLite database file \var{database}. You can use
|
|---|
| 140 | \code{":memory:"} to open a database connection to a database that resides in
|
|---|
| 141 | RAM instead of on disk.
|
|---|
| 142 |
|
|---|
| 143 | When a database is accessed by multiple connections, and one of the processes
|
|---|
| 144 | modifies the database, the SQLite database is locked until that transaction is
|
|---|
| 145 | committed. The \var{timeout} parameter specifies how long the connection should
|
|---|
| 146 | wait for the lock to go away until raising an exception. The default for the
|
|---|
| 147 | timeout parameter is 5.0 (five seconds).
|
|---|
| 148 |
|
|---|
| 149 | For the \var{isolation_level} parameter, please see the \member{isolation_level}
|
|---|
| 150 | property of \class{Connection} objects in section~\ref{sqlite3-Connection-IsolationLevel}.
|
|---|
| 151 |
|
|---|
| 152 | SQLite natively supports only the types TEXT, INTEGER, FLOAT, BLOB and NULL. If
|
|---|
| 153 | you want to use other types, like you have to add support for them yourself.
|
|---|
| 154 | The \var{detect_types} parameter and the using custom \strong{converters} registered with
|
|---|
| 155 | the module-level \function{register_converter} function allow you to easily do that.
|
|---|
| 156 |
|
|---|
| 157 | \var{detect_types} defaults to 0 (i. e. off, no type detection), you can set it
|
|---|
| 158 | to any combination of \constant{PARSE_DECLTYPES} and \constant{PARSE_COLNAMES} to turn type
|
|---|
| 159 | detection on.
|
|---|
| 160 |
|
|---|
| 161 | By default, the \module{sqlite3} module uses its \class{Connection} class for the
|
|---|
| 162 | connect call. You can, however, subclass the \class{Connection} class and make
|
|---|
| 163 | \function{connect} use your class instead by providing your class for the
|
|---|
| 164 | \var{factory} parameter.
|
|---|
| 165 |
|
|---|
| 166 | Consult the section \ref{sqlite3-Types} of this manual for details.
|
|---|
| 167 |
|
|---|
| 168 | The \module{sqlite3} module internally uses a statement cache to avoid SQL parsing
|
|---|
| 169 | overhead. If you want to explicitly set the number of statements that are
|
|---|
| 170 | cached for the connection, you can set the \var{cached_statements} parameter.
|
|---|
| 171 | The currently implemented default is to cache 100 statements.
|
|---|
| 172 | \end{funcdesc}
|
|---|
| 173 |
|
|---|
| 174 | \begin{funcdesc}{register_converter}{typename, callable}
|
|---|
| 175 | Registers a callable to convert a bytestring from the database into a custom
|
|---|
| 176 | Python type. The callable will be invoked for all database values that are of
|
|---|
| 177 | the type \var{typename}. Confer the parameter \var{detect_types} of the
|
|---|
| 178 | \function{connect} function for how the type detection works. Note that the case of
|
|---|
| 179 | \var{typename} and the name of the type in your query must match!
|
|---|
| 180 | \end{funcdesc}
|
|---|
| 181 |
|
|---|
| 182 | \begin{funcdesc}{register_adapter}{type, callable}
|
|---|
| 183 | Registers a callable to convert the custom Python type \var{type} into one of
|
|---|
| 184 | SQLite's supported types. The callable \var{callable} accepts as single
|
|---|
| 185 | parameter the Python value, and must return a value of the following types:
|
|---|
| 186 | int, long, float, str (UTF-8 encoded), unicode or buffer.
|
|---|
| 187 | \end{funcdesc}
|
|---|
| 188 |
|
|---|
| 189 | \begin{funcdesc}{complete_statement}{sql}
|
|---|
| 190 | Returns \constant{True} if the string \var{sql} one or more complete SQL
|
|---|
| 191 | statements terminated by semicolons. It does not verify if the SQL is
|
|---|
| 192 | syntactically correct, only if there are no unclosed string literals and if the
|
|---|
| 193 | statement is terminated by a semicolon.
|
|---|
| 194 |
|
|---|
| 195 | This can be used to build a shell for SQLite, like in the following example:
|
|---|
| 196 |
|
|---|
| 197 | \verbatiminput{sqlite3/complete_statement.py}
|
|---|
| 198 | \end{funcdesc}
|
|---|
| 199 |
|
|---|
| 200 | \begin{funcdesc}{enable_callback_tracebacks}{flag}
|
|---|
| 201 | By default you will not get any tracebacks in user-defined functions,
|
|---|
| 202 | aggregates, converters, authorizer callbacks etc. If you want to debug them,
|
|---|
| 203 | you can call this function with \var{flag} as True. Afterwards, you will get
|
|---|
| 204 | tracebacks from callbacks on \code{sys.stderr}. Use \constant{False} to disable
|
|---|
| 205 | the feature again.
|
|---|
| 206 | \end{funcdesc}
|
|---|
| 207 |
|
|---|
| 208 | \subsection{Connection Objects \label{sqlite3-Connection-Objects}}
|
|---|
| 209 |
|
|---|
| 210 | A \class{Connection} instance has the following attributes and methods:
|
|---|
| 211 |
|
|---|
| 212 | \label{sqlite3-Connection-IsolationLevel}
|
|---|
| 213 | \begin{memberdesc}{isolation_level}
|
|---|
| 214 | Get or set the current isolation level. None for autocommit mode or one of
|
|---|
| 215 | "DEFERRED", "IMMEDIATE" or "EXLUSIVE". See ``Controlling Transactions'',
|
|---|
| 216 | section~\ref{sqlite3-Controlling-Transactions}, for a more detailed explanation.
|
|---|
| 217 | \end{memberdesc}
|
|---|
| 218 |
|
|---|
| 219 | \begin{methoddesc}{cursor}{\optional{cursorClass}}
|
|---|
| 220 | The cursor method accepts a single optional parameter \var{cursorClass}.
|
|---|
| 221 | If supplied, this must be a custom cursor class that extends
|
|---|
| 222 | \class{sqlite3.Cursor}.
|
|---|
| 223 | \end{methoddesc}
|
|---|
| 224 |
|
|---|
| 225 | \begin{methoddesc}{execute}{sql, \optional{parameters}}
|
|---|
| 226 | This is a nonstandard shortcut that creates an intermediate cursor object by
|
|---|
| 227 | calling the cursor method, then calls the cursor's \method{execute} method with the
|
|---|
| 228 | parameters given.
|
|---|
| 229 | \end{methoddesc}
|
|---|
| 230 |
|
|---|
| 231 | \begin{methoddesc}{executemany}{sql, \optional{parameters}}
|
|---|
| 232 | This is a nonstandard shortcut that creates an intermediate cursor object by
|
|---|
| 233 | calling the cursor method, then calls the cursor's \method{executemany} method with the
|
|---|
| 234 | parameters given.
|
|---|
| 235 | \end{methoddesc}
|
|---|
| 236 |
|
|---|
| 237 | \begin{methoddesc}{executescript}{sql_script}
|
|---|
| 238 | This is a nonstandard shortcut that creates an intermediate cursor object by
|
|---|
| 239 | calling the cursor method, then calls the cursor's \method{executescript} method with the
|
|---|
| 240 | parameters given.
|
|---|
| 241 | \end{methoddesc}
|
|---|
| 242 |
|
|---|
| 243 | \begin{methoddesc}{create_function}{name, num_params, func}
|
|---|
| 244 |
|
|---|
| 245 | Creates a user-defined function that you can later use from within SQL
|
|---|
| 246 | statements under the function name \var{name}. \var{num_params} is the number
|
|---|
| 247 | of parameters the function accepts, and \var{func} is a Python callable that is
|
|---|
| 248 | called as the SQL function.
|
|---|
| 249 |
|
|---|
| 250 | The function can return any of the types supported by SQLite: unicode, str,
|
|---|
| 251 | int, long, float, buffer and None.
|
|---|
| 252 |
|
|---|
| 253 | Example:
|
|---|
| 254 |
|
|---|
| 255 | \verbatiminput{sqlite3/md5func.py}
|
|---|
| 256 | \end{methoddesc}
|
|---|
| 257 |
|
|---|
| 258 | \begin{methoddesc}{create_aggregate}{name, num_params, aggregate_class}
|
|---|
| 259 |
|
|---|
| 260 | Creates a user-defined aggregate function.
|
|---|
| 261 |
|
|---|
| 262 | The aggregate class must implement a \code{step} method, which accepts the
|
|---|
| 263 | number of parameters \var{num_params}, and a \code{finalize} method which
|
|---|
| 264 | will return the final result of the aggregate.
|
|---|
| 265 |
|
|---|
| 266 | The \code{finalize} method can return any of the types supported by SQLite:
|
|---|
| 267 | unicode, str, int, long, float, buffer and None.
|
|---|
| 268 |
|
|---|
| 269 | Example:
|
|---|
| 270 |
|
|---|
| 271 | \verbatiminput{sqlite3/mysumaggr.py}
|
|---|
| 272 | \end{methoddesc}
|
|---|
| 273 |
|
|---|
| 274 | \begin{methoddesc}{create_collation}{name, callable}
|
|---|
| 275 |
|
|---|
| 276 | Creates a collation with the specified \var{name} and \var{callable}. The
|
|---|
| 277 | callable will be passed two string arguments. It should return -1 if the first
|
|---|
| 278 | is ordered lower than the second, 0 if they are ordered equal and 1 if the
|
|---|
| 279 | first is ordered higher than the second. Note that this controls sorting
|
|---|
| 280 | (ORDER BY in SQL) so your comparisons don't affect other SQL operations.
|
|---|
| 281 |
|
|---|
| 282 | Note that the callable will get its parameters as Python bytestrings, which
|
|---|
| 283 | will normally be encoded in UTF-8.
|
|---|
| 284 |
|
|---|
| 285 | The following example shows a custom collation that sorts "the wrong way":
|
|---|
| 286 |
|
|---|
| 287 | \verbatiminput{sqlite3/collation_reverse.py}
|
|---|
| 288 |
|
|---|
| 289 | To remove a collation, call \code{create_collation} with None as callable:
|
|---|
| 290 |
|
|---|
| 291 | \begin{verbatim}
|
|---|
| 292 | con.create_collation("reverse", None)
|
|---|
| 293 | \end{verbatim}
|
|---|
| 294 | \end{methoddesc}
|
|---|
| 295 |
|
|---|
| 296 | \begin{methoddesc}{interrupt}{}
|
|---|
| 297 |
|
|---|
| 298 | You can call this method from a different thread to abort any queries that
|
|---|
| 299 | might be executing on the connection. The query will then abort and the caller
|
|---|
| 300 | will get an exception.
|
|---|
| 301 | \end{methoddesc}
|
|---|
| 302 |
|
|---|
| 303 | \begin{methoddesc}{set_authorizer}{authorizer_callback}
|
|---|
| 304 |
|
|---|
| 305 | This routine registers a callback. The callback is invoked for each attempt to
|
|---|
| 306 | access a column of a table in the database. The callback should return
|
|---|
| 307 | \constant{SQLITE_OK} if access is allowed, \constant{SQLITE_DENY} if the entire
|
|---|
| 308 | SQL statement should be aborted with an error and \constant{SQLITE_IGNORE} if
|
|---|
| 309 | the column should be treated as a NULL value. These constants are available in
|
|---|
| 310 | the \module{sqlite3} module.
|
|---|
| 311 |
|
|---|
| 312 | The first argument to the callback signifies what kind of operation is to be
|
|---|
| 313 | authorized. The second and third argument will be arguments or \constant{None}
|
|---|
| 314 | depending on the first argument. The 4th argument is the name of the database
|
|---|
| 315 | ("main", "temp", etc.) if applicable. The 5th argument is the name of the
|
|---|
| 316 | inner-most trigger or view that is responsible for the access attempt or
|
|---|
| 317 | \constant{None} if this access attempt is directly from input SQL code.
|
|---|
| 318 |
|
|---|
| 319 | Please consult the SQLite documentation about the possible values for the first
|
|---|
| 320 | argument and the meaning of the second and third argument depending on the
|
|---|
| 321 | first one. All necessary constants are available in the \module{sqlite3}
|
|---|
| 322 | module.
|
|---|
| 323 | \end{methoddesc}
|
|---|
| 324 |
|
|---|
| 325 | \begin{memberdesc}{row_factory}
|
|---|
| 326 | You can change this attribute to a callable that accepts the cursor and
|
|---|
| 327 | the original row as a tuple and will return the real result row. This
|
|---|
| 328 | way, you can implement more advanced ways of returning results, such
|
|---|
| 329 | as returning an object that can also access columns by name.
|
|---|
| 330 |
|
|---|
| 331 | Example:
|
|---|
| 332 |
|
|---|
| 333 | \verbatiminput{sqlite3/row_factory.py}
|
|---|
| 334 |
|
|---|
| 335 | If returning a tuple doesn't suffice and you want name-based
|
|---|
| 336 | access to columns, you should consider setting \member{row_factory} to the
|
|---|
| 337 | highly-optimized \class{sqlite3.Row} type. \class{Row} provides both
|
|---|
| 338 | index-based and case-insensitive name-based access to columns with almost
|
|---|
| 339 | no memory overhead. It will probably be better than your own custom
|
|---|
| 340 | dictionary-based approach or even a db_row based solution.
|
|---|
| 341 | % XXX what's a db_row-based solution?
|
|---|
| 342 | \end{memberdesc}
|
|---|
| 343 |
|
|---|
| 344 | \begin{memberdesc}{text_factory}
|
|---|
| 345 | Using this attribute you can control what objects are returned for the
|
|---|
| 346 | TEXT data type. By default, this attribute is set to \class{unicode} and
|
|---|
| 347 | the \module{sqlite3} module will return Unicode objects for TEXT. If you want to return
|
|---|
| 348 | bytestrings instead, you can set it to \class{str}.
|
|---|
| 349 |
|
|---|
| 350 | For efficiency reasons, there's also a way to return Unicode objects only
|
|---|
| 351 | for non-ASCII data, and bytestrings otherwise. To activate it, set this
|
|---|
| 352 | attribute to \constant{sqlite3.OptimizedUnicode}.
|
|---|
| 353 |
|
|---|
| 354 | You can also set it to any other callable that accepts a single bytestring
|
|---|
| 355 | parameter and returns the resulting object.
|
|---|
| 356 |
|
|---|
| 357 | See the following example code for illustration:
|
|---|
| 358 |
|
|---|
| 359 | \verbatiminput{sqlite3/text_factory.py}
|
|---|
| 360 | \end{memberdesc}
|
|---|
| 361 |
|
|---|
| 362 | \begin{memberdesc}{total_changes}
|
|---|
| 363 | Returns the total number of database rows that have been modified, inserted,
|
|---|
| 364 | or deleted since the database connection was opened.
|
|---|
| 365 | \end{memberdesc}
|
|---|
| 366 |
|
|---|
| 367 |
|
|---|
| 368 |
|
|---|
| 369 |
|
|---|
| 370 |
|
|---|
| 371 | \subsection{Cursor Objects \label{sqlite3-Cursor-Objects}}
|
|---|
| 372 |
|
|---|
| 373 | A \class{Cursor} instance has the following attributes and methods:
|
|---|
| 374 |
|
|---|
| 375 | \begin{methoddesc}{execute}{sql, \optional{parameters}}
|
|---|
| 376 |
|
|---|
| 377 | Executes a SQL statement. The SQL statement may be parametrized (i. e.
|
|---|
| 378 | placeholders instead of SQL literals). The \module{sqlite3} module supports two kinds of
|
|---|
| 379 | placeholders: question marks (qmark style) and named placeholders (named
|
|---|
| 380 | style).
|
|---|
| 381 |
|
|---|
| 382 | This example shows how to use parameters with qmark style:
|
|---|
| 383 |
|
|---|
| 384 | \verbatiminput{sqlite3/execute_1.py}
|
|---|
| 385 |
|
|---|
| 386 | This example shows how to use the named style:
|
|---|
| 387 |
|
|---|
| 388 | \verbatiminput{sqlite3/execute_2.py}
|
|---|
| 389 |
|
|---|
| 390 | \method{execute()} will only execute a single SQL statement. If you try to
|
|---|
| 391 | execute more than one statement with it, it will raise a Warning. Use
|
|---|
| 392 | \method{executescript()} if you want to execute multiple SQL statements with one
|
|---|
| 393 | call.
|
|---|
| 394 | \end{methoddesc}
|
|---|
| 395 |
|
|---|
| 396 |
|
|---|
| 397 | \begin{methoddesc}{executemany}{sql, seq_of_parameters}
|
|---|
| 398 | Executes a SQL command against all parameter sequences or mappings found in the
|
|---|
| 399 | sequence \var{sql}. The \module{sqlite3} module also allows
|
|---|
| 400 | using an iterator yielding parameters instead of a sequence.
|
|---|
| 401 |
|
|---|
| 402 | \verbatiminput{sqlite3/executemany_1.py}
|
|---|
| 403 |
|
|---|
| 404 | Here's a shorter example using a generator:
|
|---|
| 405 |
|
|---|
| 406 | \verbatiminput{sqlite3/executemany_2.py}
|
|---|
| 407 | \end{methoddesc}
|
|---|
| 408 |
|
|---|
| 409 | \begin{methoddesc}{executescript}{sql_script}
|
|---|
| 410 |
|
|---|
| 411 | This is a nonstandard convenience method for executing multiple SQL statements
|
|---|
| 412 | at once. It issues a COMMIT statement first, then executes the SQL script it
|
|---|
| 413 | gets as a parameter.
|
|---|
| 414 |
|
|---|
| 415 | \var{sql_script} can be a bytestring or a Unicode string.
|
|---|
| 416 |
|
|---|
| 417 | Example:
|
|---|
| 418 |
|
|---|
| 419 | \verbatiminput{sqlite3/executescript.py}
|
|---|
| 420 | \end{methoddesc}
|
|---|
| 421 |
|
|---|
| 422 | \begin{memberdesc}{rowcount}
|
|---|
| 423 | Although the \class{Cursor} class of the \module{sqlite3} module implements this
|
|---|
| 424 | attribute, the database engine's own support for the determination of "rows
|
|---|
| 425 | affected"/"rows selected" is quirky.
|
|---|
| 426 |
|
|---|
| 427 | For \code{SELECT} statements, \member{rowcount} is always None because we cannot
|
|---|
| 428 | determine the number of rows a query produced until all rows were fetched.
|
|---|
| 429 |
|
|---|
| 430 | For \code{DELETE} statements, SQLite reports \member{rowcount} as 0 if you make a
|
|---|
| 431 | \code{DELETE FROM table} without any condition.
|
|---|
| 432 |
|
|---|
| 433 | For \method{executemany} statements, the number of modifications are summed
|
|---|
| 434 | up into \member{rowcount}.
|
|---|
| 435 |
|
|---|
| 436 | As required by the Python DB API Spec, the \member{rowcount} attribute "is -1
|
|---|
| 437 | in case no executeXX() has been performed on the cursor or the rowcount
|
|---|
| 438 | of the last operation is not determinable by the interface".
|
|---|
| 439 | \end{memberdesc}
|
|---|
| 440 |
|
|---|
| 441 | \subsection{SQLite and Python types\label{sqlite3-Types}}
|
|---|
| 442 |
|
|---|
| 443 | \subsubsection{Introduction}
|
|---|
| 444 |
|
|---|
| 445 | SQLite natively supports the following types: NULL, INTEGER, REAL, TEXT, BLOB.
|
|---|
| 446 |
|
|---|
| 447 | The following Python types can thus be sent to SQLite without any problem:
|
|---|
| 448 |
|
|---|
| 449 | \begin{tableii} {c|l}{code}{Python type}{SQLite type}
|
|---|
| 450 | \lineii{None}{NULL}
|
|---|
| 451 | \lineii{int}{INTEGER}
|
|---|
| 452 | \lineii{long}{INTEGER}
|
|---|
| 453 | \lineii{float}{REAL}
|
|---|
| 454 | \lineii{str (UTF8-encoded)}{TEXT}
|
|---|
| 455 | \lineii{unicode}{TEXT}
|
|---|
| 456 | \lineii{buffer}{BLOB}
|
|---|
| 457 | \end{tableii}
|
|---|
| 458 |
|
|---|
| 459 | This is how SQLite types are converted to Python types by default:
|
|---|
| 460 |
|
|---|
| 461 | \begin{tableii} {c|l}{code}{SQLite type}{Python type}
|
|---|
| 462 | \lineii{NULL}{None}
|
|---|
| 463 | \lineii{INTEGER}{int or long, depending on size}
|
|---|
| 464 | \lineii{REAL}{float}
|
|---|
| 465 | \lineii{TEXT}{depends on text_factory, unicode by default}
|
|---|
| 466 | \lineii{BLOB}{buffer}
|
|---|
| 467 | \end{tableii}
|
|---|
| 468 |
|
|---|
| 469 | The type system of the \module{sqlite3} module is extensible in two ways: you can store
|
|---|
| 470 | additional Python types in a SQLite database via object adaptation, and you can
|
|---|
| 471 | let the \module{sqlite3} module convert SQLite types to different Python types via
|
|---|
| 472 | converters.
|
|---|
| 473 |
|
|---|
| 474 | \subsubsection{Using adapters to store additional Python types in SQLite databases}
|
|---|
| 475 |
|
|---|
| 476 | As described before, SQLite supports only a limited set of types natively. To
|
|---|
| 477 | use other Python types with SQLite, you must \strong{adapt} them to one of the sqlite3
|
|---|
| 478 | module's supported types for SQLite: one of NoneType, int, long, float,
|
|---|
| 479 | str, unicode, buffer.
|
|---|
| 480 |
|
|---|
| 481 | The \module{sqlite3} module uses Python object adaptation, as described in \pep{246} for this. The protocol to use is \class{PrepareProtocol}.
|
|---|
| 482 |
|
|---|
| 483 | There are two ways to enable the \module{sqlite3} module to adapt a custom Python type
|
|---|
| 484 | to one of the supported ones.
|
|---|
| 485 |
|
|---|
| 486 | \paragraph{Letting your object adapt itself}
|
|---|
| 487 |
|
|---|
| 488 | This is a good approach if you write the class yourself. Let's suppose you have
|
|---|
| 489 | a class like this:
|
|---|
| 490 |
|
|---|
| 491 | \begin{verbatim}
|
|---|
| 492 | class Point(object):
|
|---|
| 493 | def __init__(self, x, y):
|
|---|
| 494 | self.x, self.y = x, y
|
|---|
| 495 | \end{verbatim}
|
|---|
| 496 |
|
|---|
| 497 | Now you want to store the point in a single SQLite column. First you'll have to
|
|---|
| 498 | choose one of the supported types first to be used for representing the point.
|
|---|
| 499 | Let's just use str and separate the coordinates using a semicolon. Then you
|
|---|
| 500 | need to give your class a method \code{__conform__(self, protocol)} which must
|
|---|
| 501 | return the converted value. The parameter \var{protocol} will be
|
|---|
| 502 | \class{PrepareProtocol}.
|
|---|
| 503 |
|
|---|
| 504 | \verbatiminput{sqlite3/adapter_point_1.py}
|
|---|
| 505 |
|
|---|
| 506 | \paragraph{Registering an adapter callable}
|
|---|
| 507 |
|
|---|
| 508 | The other possibility is to create a function that converts the type to the
|
|---|
| 509 | string representation and register the function with \method{register_adapter}.
|
|---|
| 510 |
|
|---|
| 511 | \begin{notice}
|
|---|
| 512 | The type/class to adapt must be a new-style class, i. e. it must have
|
|---|
| 513 | \class{object} as one of its bases.
|
|---|
| 514 | \end{notice}
|
|---|
| 515 |
|
|---|
| 516 | \verbatiminput{sqlite3/adapter_point_2.py}
|
|---|
| 517 |
|
|---|
| 518 | The \module{sqlite3} module has two default adapters for Python's built-in
|
|---|
| 519 | \class{datetime.date} and \class{datetime.datetime} types. Now let's suppose
|
|---|
| 520 | we want to store \class{datetime.datetime} objects not in ISO representation,
|
|---|
| 521 | but as a \UNIX{} timestamp.
|
|---|
| 522 |
|
|---|
| 523 | \verbatiminput{sqlite3/adapter_datetime.py}
|
|---|
| 524 |
|
|---|
| 525 | \subsubsection{Converting SQLite values to custom Python types}
|
|---|
| 526 |
|
|---|
| 527 | Writing an adapter lets you send custom Python types to SQLite.
|
|---|
| 528 | But to make it really useful we need to make the Python to SQLite to Python
|
|---|
| 529 | roundtrip work.
|
|---|
| 530 |
|
|---|
| 531 | Enter converters.
|
|---|
| 532 |
|
|---|
| 533 | Let's go back to the \class{Point} class. We stored the x and y
|
|---|
| 534 | coordinates separated via semicolons as strings in SQLite.
|
|---|
| 535 |
|
|---|
| 536 | First, we'll define a converter function that accepts the string as a
|
|---|
| 537 | parameter and constructs a \class{Point} object from it.
|
|---|
| 538 |
|
|---|
| 539 | \begin{notice}
|
|---|
| 540 | Converter functions \strong{always} get called with a string, no matter
|
|---|
| 541 | under which data type you sent the value to SQLite.
|
|---|
| 542 | \end{notice}
|
|---|
| 543 |
|
|---|
| 544 | \begin{notice}
|
|---|
| 545 | Converter names are looked up in a case-sensitive manner.
|
|---|
| 546 | \end{notice}
|
|---|
| 547 |
|
|---|
| 548 |
|
|---|
| 549 | \begin{verbatim}
|
|---|
| 550 | def convert_point(s):
|
|---|
| 551 | x, y = map(float, s.split(";"))
|
|---|
| 552 | return Point(x, y)
|
|---|
| 553 | \end{verbatim}
|
|---|
| 554 |
|
|---|
| 555 | Now you need to make the \module{sqlite3} module know that what you select from the
|
|---|
| 556 | database is actually a point. There are two ways of doing this:
|
|---|
| 557 |
|
|---|
| 558 | \begin{itemize}
|
|---|
| 559 | \item Implicitly via the declared type
|
|---|
| 560 | \item Explicitly via the column name
|
|---|
| 561 | \end{itemize}
|
|---|
| 562 |
|
|---|
| 563 | Both ways are described in ``Module Constants'', section~\ref{sqlite3-Module-Contents}, in
|
|---|
| 564 | the entries for the constants \constant{PARSE_DECLTYPES} and
|
|---|
| 565 | \constant{PARSE_COLNAMES}.
|
|---|
| 566 |
|
|---|
| 567 |
|
|---|
| 568 | The following example illustrates both approaches.
|
|---|
| 569 |
|
|---|
| 570 | \verbatiminput{sqlite3/converter_point.py}
|
|---|
| 571 |
|
|---|
| 572 | \subsubsection{Default adapters and converters}
|
|---|
| 573 |
|
|---|
| 574 | There are default adapters for the date and datetime types in the datetime
|
|---|
| 575 | module. They will be sent as ISO dates/ISO timestamps to SQLite.
|
|---|
| 576 |
|
|---|
| 577 | The default converters are registered under the name "date" for \class{datetime.date}
|
|---|
| 578 | and under the name "timestamp" for \class{datetime.datetime}.
|
|---|
| 579 |
|
|---|
| 580 | This way, you can use date/timestamps from Python without any additional
|
|---|
| 581 | fiddling in most cases. The format of the adapters is also compatible with the
|
|---|
| 582 | experimental SQLite date/time functions.
|
|---|
| 583 |
|
|---|
| 584 | The following example demonstrates this.
|
|---|
| 585 |
|
|---|
| 586 | \verbatiminput{sqlite3/pysqlite_datetime.py}
|
|---|
| 587 |
|
|---|
| 588 | \subsection{Controlling Transactions \label{sqlite3-Controlling-Transactions}}
|
|---|
| 589 |
|
|---|
| 590 | By default, the \module{sqlite3} module opens transactions implicitly before a Data Modification Language (DML)
|
|---|
| 591 | statement (i.e. INSERT/UPDATE/DELETE/REPLACE), and commits transactions implicitly
|
|---|
| 592 | before a non-DML, non-query statement (i. e. anything other than
|
|---|
| 593 | SELECT/INSERT/UPDATE/DELETE/REPLACE).
|
|---|
| 594 |
|
|---|
| 595 | So if you are within a transaction and issue a command like \code{CREATE TABLE
|
|---|
| 596 | ...}, \code{VACUUM}, \code{PRAGMA}, the \module{sqlite3} module will commit implicitly
|
|---|
| 597 | before executing that command. There are two reasons for doing that. The first
|
|---|
| 598 | is that some of these commands don't work within transactions. The other reason
|
|---|
| 599 | is that pysqlite needs to keep track of the transaction state (if a transaction
|
|---|
| 600 | is active or not).
|
|---|
| 601 |
|
|---|
| 602 | You can control which kind of "BEGIN" statements pysqlite implicitly executes
|
|---|
| 603 | (or none at all) via the \var{isolation_level} parameter to the
|
|---|
| 604 | \function{connect} call, or via the \member{isolation_level} property of
|
|---|
| 605 | connections.
|
|---|
| 606 |
|
|---|
| 607 | If you want \strong{autocommit mode}, then set \member{isolation_level} to None.
|
|---|
| 608 |
|
|---|
| 609 | Otherwise leave it at its default, which will result in a plain "BEGIN"
|
|---|
| 610 | statement, or set it to one of SQLite's supported isolation levels: DEFERRED,
|
|---|
| 611 | IMMEDIATE or EXCLUSIVE.
|
|---|
| 612 |
|
|---|
| 613 | As the \module{sqlite3} module needs to keep track of the transaction state, you should
|
|---|
| 614 | not use \code{OR ROLLBACK} or \code{ON CONFLICT ROLLBACK} in your SQL. Instead,
|
|---|
| 615 | catch the \exception{IntegrityError} and call the \method{rollback} method of
|
|---|
| 616 | the connection yourself.
|
|---|
| 617 |
|
|---|
| 618 | \subsection{Using pysqlite efficiently}
|
|---|
| 619 |
|
|---|
| 620 | \subsubsection{Using shortcut methods}
|
|---|
| 621 |
|
|---|
| 622 | Using the nonstandard \method{execute}, \method{executemany} and
|
|---|
| 623 | \method{executescript} methods of the \class{Connection} object, your code can
|
|---|
| 624 | be written more concisely because you don't have to create the (often
|
|---|
| 625 | superfluous) \class{Cursor} objects explicitly. Instead, the \class{Cursor}
|
|---|
| 626 | objects are created implicitly and these shortcut methods return the cursor
|
|---|
| 627 | objects. This way, you can execute a SELECT statement and iterate
|
|---|
| 628 | over it directly using only a single call on the \class{Connection} object.
|
|---|
| 629 |
|
|---|
| 630 | \verbatiminput{sqlite3/shortcut_methods.py}
|
|---|
| 631 |
|
|---|
| 632 | \subsubsection{Accessing columns by name instead of by index}
|
|---|
| 633 |
|
|---|
| 634 | One useful feature of the \module{sqlite3} module is the builtin \class{sqlite3.Row} class
|
|---|
| 635 | designed to be used as a row factory.
|
|---|
| 636 |
|
|---|
| 637 | Rows wrapped with this class can be accessed both by index (like tuples) and
|
|---|
| 638 | case-insensitively by name:
|
|---|
| 639 |
|
|---|
| 640 | \verbatiminput{sqlite3/rowclass.py}
|
|---|
| 641 |
|
|---|
| 642 |
|
|---|