| 1 | \section{\module{decimal} ---
|
|---|
| 2 | Decimal floating point arithmetic}
|
|---|
| 3 |
|
|---|
| 4 | \declaremodule{standard}{decimal}
|
|---|
| 5 | \modulesynopsis{Implementation of the General Decimal Arithmetic
|
|---|
| 6 | Specification.}
|
|---|
| 7 |
|
|---|
| 8 | \moduleauthor{Eric Price}{eprice at tjhsst.edu}
|
|---|
| 9 | \moduleauthor{Facundo Batista}{facundo at taniquetil.com.ar}
|
|---|
| 10 | \moduleauthor{Raymond Hettinger}{python at rcn.com}
|
|---|
| 11 | \moduleauthor{Aahz}{aahz at pobox.com}
|
|---|
| 12 | \moduleauthor{Tim Peters}{tim.one at comcast.net}
|
|---|
| 13 |
|
|---|
| 14 | \sectionauthor{Raymond D. Hettinger}{python at rcn.com}
|
|---|
| 15 |
|
|---|
| 16 | \versionadded{2.4}
|
|---|
| 17 |
|
|---|
| 18 | The \module{decimal} module provides support for decimal floating point
|
|---|
| 19 | arithmetic. It offers several advantages over the \class{float()} datatype:
|
|---|
| 20 |
|
|---|
| 21 | \begin{itemize}
|
|---|
| 22 |
|
|---|
| 23 | \item Decimal numbers can be represented exactly. In contrast, numbers like
|
|---|
| 24 | \constant{1.1} do not have an exact representation in binary floating point.
|
|---|
| 25 | End users typically would not expect \constant{1.1} to display as
|
|---|
| 26 | \constant{1.1000000000000001} as it does with binary floating point.
|
|---|
| 27 |
|
|---|
| 28 | \item The exactness carries over into arithmetic. In decimal floating point,
|
|---|
| 29 | \samp{0.1 + 0.1 + 0.1 - 0.3} is exactly equal to zero. In binary floating
|
|---|
| 30 | point, result is \constant{5.5511151231257827e-017}. While near to zero, the
|
|---|
| 31 | differences prevent reliable equality testing and differences can accumulate.
|
|---|
| 32 | For this reason, decimal would be preferred in accounting applications which
|
|---|
| 33 | have strict equality invariants.
|
|---|
| 34 |
|
|---|
| 35 | \item The decimal module incorporates a notion of significant places so that
|
|---|
| 36 | \samp{1.30 + 1.20} is \constant{2.50}. The trailing zero is kept to indicate
|
|---|
| 37 | significance. This is the customary presentation for monetary applications. For
|
|---|
| 38 | multiplication, the ``schoolbook'' approach uses all the figures in the
|
|---|
| 39 | multiplicands. For instance, \samp{1.3 * 1.2} gives \constant{1.56} while
|
|---|
| 40 | \samp{1.30 * 1.20} gives \constant{1.5600}.
|
|---|
| 41 |
|
|---|
| 42 | \item Unlike hardware based binary floating point, the decimal module has a user
|
|---|
| 43 | settable precision (defaulting to 28 places) which can be as large as needed for
|
|---|
| 44 | a given problem:
|
|---|
| 45 |
|
|---|
| 46 | \begin{verbatim}
|
|---|
| 47 | >>> getcontext().prec = 6
|
|---|
| 48 | >>> Decimal(1) / Decimal(7)
|
|---|
| 49 | Decimal("0.142857")
|
|---|
| 50 | >>> getcontext().prec = 28
|
|---|
| 51 | >>> Decimal(1) / Decimal(7)
|
|---|
| 52 | Decimal("0.1428571428571428571428571429")
|
|---|
| 53 | \end{verbatim}
|
|---|
| 54 |
|
|---|
| 55 | \item Both binary and decimal floating point are implemented in terms of published
|
|---|
| 56 | standards. While the built-in float type exposes only a modest portion of its
|
|---|
| 57 | capabilities, the decimal module exposes all required parts of the standard.
|
|---|
| 58 | When needed, the programmer has full control over rounding and signal handling.
|
|---|
| 59 |
|
|---|
| 60 | \end{itemize}
|
|---|
| 61 |
|
|---|
| 62 |
|
|---|
| 63 | The module design is centered around three concepts: the decimal number, the
|
|---|
| 64 | context for arithmetic, and signals.
|
|---|
| 65 |
|
|---|
| 66 | A decimal number is immutable. It has a sign, coefficient digits, and an
|
|---|
| 67 | exponent. To preserve significance, the coefficient digits do not truncate
|
|---|
| 68 | trailing zeroes. Decimals also include special values such as
|
|---|
| 69 | \constant{Infinity}, \constant{-Infinity}, and \constant{NaN}. The standard
|
|---|
| 70 | also differentiates \constant{-0} from \constant{+0}.
|
|---|
| 71 |
|
|---|
| 72 | The context for arithmetic is an environment specifying precision, rounding
|
|---|
| 73 | rules, limits on exponents, flags indicating the results of operations,
|
|---|
| 74 | and trap enablers which determine whether signals are treated as
|
|---|
| 75 | exceptions. Rounding options include \constant{ROUND_CEILING},
|
|---|
| 76 | \constant{ROUND_DOWN}, \constant{ROUND_FLOOR}, \constant{ROUND_HALF_DOWN},
|
|---|
| 77 | \constant{ROUND_HALF_EVEN}, \constant{ROUND_HALF_UP}, and \constant{ROUND_UP}.
|
|---|
| 78 |
|
|---|
| 79 | Signals are groups of exceptional conditions arising during the course of
|
|---|
| 80 | computation. Depending on the needs of the application, signals may be
|
|---|
| 81 | ignored, considered as informational, or treated as exceptions. The signals in
|
|---|
| 82 | the decimal module are: \constant{Clamped}, \constant{InvalidOperation},
|
|---|
| 83 | \constant{DivisionByZero}, \constant{Inexact}, \constant{Rounded},
|
|---|
| 84 | \constant{Subnormal}, \constant{Overflow}, and \constant{Underflow}.
|
|---|
| 85 |
|
|---|
| 86 | For each signal there is a flag and a trap enabler. When a signal is
|
|---|
| 87 | encountered, its flag is incremented from zero and, then, if the trap enabler
|
|---|
| 88 | is set to one, an exception is raised. Flags are sticky, so the user
|
|---|
| 89 | needs to reset them before monitoring a calculation.
|
|---|
| 90 |
|
|---|
| 91 |
|
|---|
| 92 | \begin{seealso}
|
|---|
| 93 | \seetext{IBM's General Decimal Arithmetic Specification,
|
|---|
| 94 | \citetitle[http://www2.hursley.ibm.com/decimal/decarith.html]
|
|---|
| 95 | {The General Decimal Arithmetic Specification}.}
|
|---|
| 96 |
|
|---|
| 97 | \seetext{IEEE standard 854-1987,
|
|---|
| 98 | \citetitle[http://www.cs.berkeley.edu/\textasciitilde ejr/projects/754/private/drafts/854-1987/dir.html]
|
|---|
| 99 | {Unofficial IEEE 854 Text}.}
|
|---|
| 100 | \end{seealso}
|
|---|
| 101 |
|
|---|
| 102 |
|
|---|
| 103 |
|
|---|
| 104 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 105 | \subsection{Quick-start Tutorial \label{decimal-tutorial}}
|
|---|
| 106 |
|
|---|
| 107 | The usual start to using decimals is importing the module, viewing the current
|
|---|
| 108 | context with \function{getcontext()} and, if necessary, setting new values
|
|---|
| 109 | for precision, rounding, or enabled traps:
|
|---|
| 110 |
|
|---|
| 111 | \begin{verbatim}
|
|---|
| 112 | >>> from decimal import *
|
|---|
| 113 | >>> getcontext()
|
|---|
| 114 | Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
|
|---|
| 115 | capitals=1, flags=[], traps=[Overflow, InvalidOperation,
|
|---|
| 116 | DivisionByZero])
|
|---|
| 117 |
|
|---|
| 118 | >>> getcontext().prec = 7 # Set a new precision
|
|---|
| 119 | \end{verbatim}
|
|---|
| 120 |
|
|---|
| 121 |
|
|---|
| 122 | Decimal instances can be constructed from integers, strings, or tuples. To
|
|---|
| 123 | create a Decimal from a \class{float}, first convert it to a string. This
|
|---|
| 124 | serves as an explicit reminder of the details of the conversion (including
|
|---|
| 125 | representation error). Decimal numbers include special values such as
|
|---|
| 126 | \constant{NaN} which stands for ``Not a number'', positive and negative
|
|---|
| 127 | \constant{Infinity}, and \constant{-0}.
|
|---|
| 128 |
|
|---|
| 129 | \begin{verbatim}
|
|---|
| 130 | >>> Decimal(10)
|
|---|
| 131 | Decimal("10")
|
|---|
| 132 | >>> Decimal("3.14")
|
|---|
| 133 | Decimal("3.14")
|
|---|
| 134 | >>> Decimal((0, (3, 1, 4), -2))
|
|---|
| 135 | Decimal("3.14")
|
|---|
| 136 | >>> Decimal(str(2.0 ** 0.5))
|
|---|
| 137 | Decimal("1.41421356237")
|
|---|
| 138 | >>> Decimal("NaN")
|
|---|
| 139 | Decimal("NaN")
|
|---|
| 140 | >>> Decimal("-Infinity")
|
|---|
| 141 | Decimal("-Infinity")
|
|---|
| 142 | \end{verbatim}
|
|---|
| 143 |
|
|---|
| 144 |
|
|---|
| 145 | The significance of a new Decimal is determined solely by the number
|
|---|
| 146 | of digits input. Context precision and rounding only come into play during
|
|---|
| 147 | arithmetic operations.
|
|---|
| 148 |
|
|---|
| 149 | \begin{verbatim}
|
|---|
| 150 | >>> getcontext().prec = 6
|
|---|
| 151 | >>> Decimal('3.0')
|
|---|
| 152 | Decimal("3.0")
|
|---|
| 153 | >>> Decimal('3.1415926535')
|
|---|
| 154 | Decimal("3.1415926535")
|
|---|
| 155 | >>> Decimal('3.1415926535') + Decimal('2.7182818285')
|
|---|
| 156 | Decimal("5.85987")
|
|---|
| 157 | >>> getcontext().rounding = ROUND_UP
|
|---|
| 158 | >>> Decimal('3.1415926535') + Decimal('2.7182818285')
|
|---|
| 159 | Decimal("5.85988")
|
|---|
| 160 | \end{verbatim}
|
|---|
| 161 |
|
|---|
| 162 |
|
|---|
| 163 | Decimals interact well with much of the rest of Python. Here is a small
|
|---|
| 164 | decimal floating point flying circus:
|
|---|
| 165 |
|
|---|
| 166 | \begin{verbatim}
|
|---|
| 167 | >>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
|
|---|
| 168 | >>> max(data)
|
|---|
| 169 | Decimal("9.25")
|
|---|
| 170 | >>> min(data)
|
|---|
| 171 | Decimal("0.03")
|
|---|
| 172 | >>> sorted(data)
|
|---|
| 173 | [Decimal("0.03"), Decimal("1.00"), Decimal("1.34"), Decimal("1.87"),
|
|---|
| 174 | Decimal("2.35"), Decimal("3.45"), Decimal("9.25")]
|
|---|
| 175 | >>> sum(data)
|
|---|
| 176 | Decimal("19.29")
|
|---|
| 177 | >>> a,b,c = data[:3]
|
|---|
| 178 | >>> str(a)
|
|---|
| 179 | '1.34'
|
|---|
| 180 | >>> float(a)
|
|---|
| 181 | 1.3400000000000001
|
|---|
| 182 | >>> round(a, 1) # round() first converts to binary floating point
|
|---|
| 183 | 1.3
|
|---|
| 184 | >>> int(a)
|
|---|
| 185 | 1
|
|---|
| 186 | >>> a * 5
|
|---|
| 187 | Decimal("6.70")
|
|---|
| 188 | >>> a * b
|
|---|
| 189 | Decimal("2.5058")
|
|---|
| 190 | >>> c % a
|
|---|
| 191 | Decimal("0.77")
|
|---|
| 192 | \end{verbatim}
|
|---|
| 193 |
|
|---|
| 194 | The \method{quantize()} method rounds a number to a fixed exponent. This
|
|---|
| 195 | method is useful for monetary applications that often round results to a fixed
|
|---|
| 196 | number of places:
|
|---|
| 197 |
|
|---|
| 198 | \begin{verbatim}
|
|---|
| 199 | >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
|
|---|
| 200 | Decimal("7.32")
|
|---|
| 201 | >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
|
|---|
| 202 | Decimal("8")
|
|---|
| 203 | \end{verbatim}
|
|---|
| 204 |
|
|---|
| 205 | As shown above, the \function{getcontext()} function accesses the current
|
|---|
| 206 | context and allows the settings to be changed. This approach meets the
|
|---|
| 207 | needs of most applications.
|
|---|
| 208 |
|
|---|
| 209 | For more advanced work, it may be useful to create alternate contexts using
|
|---|
| 210 | the Context() constructor. To make an alternate active, use the
|
|---|
| 211 | \function{setcontext()} function.
|
|---|
| 212 |
|
|---|
| 213 | In accordance with the standard, the \module{Decimal} module provides two
|
|---|
| 214 | ready to use standard contexts, \constant{BasicContext} and
|
|---|
| 215 | \constant{ExtendedContext}. The former is especially useful for debugging
|
|---|
| 216 | because many of the traps are enabled:
|
|---|
| 217 |
|
|---|
| 218 | \begin{verbatim}
|
|---|
| 219 | >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
|
|---|
| 220 | >>> setcontext(myothercontext)
|
|---|
| 221 | >>> Decimal(1) / Decimal(7)
|
|---|
| 222 | Decimal("0.142857142857142857142857142857142857142857142857142857142857")
|
|---|
| 223 |
|
|---|
| 224 | >>> ExtendedContext
|
|---|
| 225 | Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
|
|---|
| 226 | capitals=1, flags=[], traps=[])
|
|---|
| 227 | >>> setcontext(ExtendedContext)
|
|---|
| 228 | >>> Decimal(1) / Decimal(7)
|
|---|
| 229 | Decimal("0.142857143")
|
|---|
| 230 | >>> Decimal(42) / Decimal(0)
|
|---|
| 231 | Decimal("Infinity")
|
|---|
| 232 |
|
|---|
| 233 | >>> setcontext(BasicContext)
|
|---|
| 234 | >>> Decimal(42) / Decimal(0)
|
|---|
| 235 | Traceback (most recent call last):
|
|---|
| 236 | File "<pyshell#143>", line 1, in -toplevel-
|
|---|
| 237 | Decimal(42) / Decimal(0)
|
|---|
| 238 | DivisionByZero: x / 0
|
|---|
| 239 | \end{verbatim}
|
|---|
| 240 |
|
|---|
| 241 |
|
|---|
| 242 | Contexts also have signal flags for monitoring exceptional conditions
|
|---|
| 243 | encountered during computations. The flags remain set until explicitly
|
|---|
| 244 | cleared, so it is best to clear the flags before each set of monitored
|
|---|
| 245 | computations by using the \method{clear_flags()} method.
|
|---|
| 246 |
|
|---|
| 247 | \begin{verbatim}
|
|---|
| 248 | >>> setcontext(ExtendedContext)
|
|---|
| 249 | >>> getcontext().clear_flags()
|
|---|
| 250 | >>> Decimal(355) / Decimal(113)
|
|---|
| 251 | Decimal("3.14159292")
|
|---|
| 252 | >>> getcontext()
|
|---|
| 253 | Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
|
|---|
| 254 | capitals=1, flags=[Inexact, Rounded], traps=[])
|
|---|
| 255 | \end{verbatim}
|
|---|
| 256 |
|
|---|
| 257 | The \var{flags} entry shows that the rational approximation to \constant{Pi}
|
|---|
| 258 | was rounded (digits beyond the context precision were thrown away) and that
|
|---|
| 259 | the result is inexact (some of the discarded digits were non-zero).
|
|---|
| 260 |
|
|---|
| 261 | Individual traps are set using the dictionary in the \member{traps}
|
|---|
| 262 | field of a context:
|
|---|
| 263 |
|
|---|
| 264 | \begin{verbatim}
|
|---|
| 265 | >>> Decimal(1) / Decimal(0)
|
|---|
| 266 | Decimal("Infinity")
|
|---|
| 267 | >>> getcontext().traps[DivisionByZero] = 1
|
|---|
| 268 | >>> Decimal(1) / Decimal(0)
|
|---|
| 269 | Traceback (most recent call last):
|
|---|
| 270 | File "<pyshell#112>", line 1, in -toplevel-
|
|---|
| 271 | Decimal(1) / Decimal(0)
|
|---|
| 272 | DivisionByZero: x / 0
|
|---|
| 273 | \end{verbatim}
|
|---|
| 274 |
|
|---|
| 275 | Most programs adjust the current context only once, at the beginning of the
|
|---|
| 276 | program. And, in many applications, data is converted to \class{Decimal} with
|
|---|
| 277 | a single cast inside a loop. With context set and decimals created, the bulk
|
|---|
| 278 | of the program manipulates the data no differently than with other Python
|
|---|
| 279 | numeric types.
|
|---|
| 280 |
|
|---|
| 281 |
|
|---|
| 282 |
|
|---|
| 283 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 284 | \subsection{Decimal objects \label{decimal-decimal}}
|
|---|
| 285 |
|
|---|
| 286 | \begin{classdesc}{Decimal}{\optional{value \optional{, context}}}
|
|---|
| 287 | Constructs a new \class{Decimal} object based from \var{value}.
|
|---|
| 288 |
|
|---|
| 289 | \var{value} can be an integer, string, tuple, or another \class{Decimal}
|
|---|
| 290 | object. If no \var{value} is given, returns \code{Decimal("0")}. If
|
|---|
| 291 | \var{value} is a string, it should conform to the decimal numeric string
|
|---|
| 292 | syntax:
|
|---|
| 293 |
|
|---|
| 294 | \begin{verbatim}
|
|---|
| 295 | sign ::= '+' | '-'
|
|---|
| 296 | digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
|
|---|
| 297 | indicator ::= 'e' | 'E'
|
|---|
| 298 | digits ::= digit [digit]...
|
|---|
| 299 | decimal-part ::= digits '.' [digits] | ['.'] digits
|
|---|
| 300 | exponent-part ::= indicator [sign] digits
|
|---|
| 301 | infinity ::= 'Infinity' | 'Inf'
|
|---|
| 302 | nan ::= 'NaN' [digits] | 'sNaN' [digits]
|
|---|
| 303 | numeric-value ::= decimal-part [exponent-part] | infinity
|
|---|
| 304 | numeric-string ::= [sign] numeric-value | [sign] nan
|
|---|
| 305 | \end{verbatim}
|
|---|
| 306 |
|
|---|
| 307 | If \var{value} is a \class{tuple}, it should have three components,
|
|---|
| 308 | a sign (\constant{0} for positive or \constant{1} for negative),
|
|---|
| 309 | a \class{tuple} of digits, and an integer exponent. For example,
|
|---|
| 310 | \samp{Decimal((0, (1, 4, 1, 4), -3))} returns \code{Decimal("1.414")}.
|
|---|
| 311 |
|
|---|
| 312 | The \var{context} precision does not affect how many digits are stored.
|
|---|
| 313 | That is determined exclusively by the number of digits in \var{value}. For
|
|---|
| 314 | example, \samp{Decimal("3.00000")} records all five zeroes even if the
|
|---|
| 315 | context precision is only three.
|
|---|
| 316 |
|
|---|
| 317 | The purpose of the \var{context} argument is determining what to do if
|
|---|
| 318 | \var{value} is a malformed string. If the context traps
|
|---|
| 319 | \constant{InvalidOperation}, an exception is raised; otherwise, the
|
|---|
| 320 | constructor returns a new Decimal with the value of \constant{NaN}.
|
|---|
| 321 |
|
|---|
| 322 | Once constructed, \class{Decimal} objects are immutable.
|
|---|
| 323 | \end{classdesc}
|
|---|
| 324 |
|
|---|
| 325 | Decimal floating point objects share many properties with the other builtin
|
|---|
| 326 | numeric types such as \class{float} and \class{int}. All of the usual
|
|---|
| 327 | math operations and special methods apply. Likewise, decimal objects can
|
|---|
| 328 | be copied, pickled, printed, used as dictionary keys, used as set elements,
|
|---|
| 329 | compared, sorted, and coerced to another type (such as \class{float}
|
|---|
| 330 | or \class{long}).
|
|---|
| 331 |
|
|---|
| 332 | In addition to the standard numeric properties, decimal floating point objects
|
|---|
| 333 | also have a number of specialized methods:
|
|---|
| 334 |
|
|---|
| 335 | \begin{methoddesc}{adjusted}{}
|
|---|
| 336 | Return the adjusted exponent after shifting out the coefficient's rightmost
|
|---|
| 337 | digits until only the lead digit remains: \code{Decimal("321e+5").adjusted()}
|
|---|
| 338 | returns seven. Used for determining the position of the most significant
|
|---|
| 339 | digit with respect to the decimal point.
|
|---|
| 340 | \end{methoddesc}
|
|---|
| 341 |
|
|---|
| 342 | \begin{methoddesc}{as_tuple}{}
|
|---|
| 343 | Returns a tuple representation of the number:
|
|---|
| 344 | \samp{(sign, digittuple, exponent)}.
|
|---|
| 345 | \end{methoddesc}
|
|---|
| 346 |
|
|---|
| 347 | \begin{methoddesc}{compare}{other\optional{, context}}
|
|---|
| 348 | Compares like \method{__cmp__()} but returns a decimal instance:
|
|---|
| 349 | \begin{verbatim}
|
|---|
| 350 | a or b is a NaN ==> Decimal("NaN")
|
|---|
| 351 | a < b ==> Decimal("-1")
|
|---|
| 352 | a == b ==> Decimal("0")
|
|---|
| 353 | a > b ==> Decimal("1")
|
|---|
| 354 | \end{verbatim}
|
|---|
| 355 | \end{methoddesc}
|
|---|
| 356 |
|
|---|
| 357 | \begin{methoddesc}{max}{other\optional{, context}}
|
|---|
| 358 | Like \samp{max(self, other)} except that the context rounding rule
|
|---|
| 359 | is applied before returning and that \constant{NaN} values are
|
|---|
| 360 | either signalled or ignored (depending on the context and whether
|
|---|
| 361 | they are signaling or quiet).
|
|---|
| 362 | \end{methoddesc}
|
|---|
| 363 |
|
|---|
| 364 | \begin{methoddesc}{min}{other\optional{, context}}
|
|---|
| 365 | Like \samp{min(self, other)} except that the context rounding rule
|
|---|
| 366 | is applied before returning and that \constant{NaN} values are
|
|---|
| 367 | either signalled or ignored (depending on the context and whether
|
|---|
| 368 | they are signaling or quiet).
|
|---|
| 369 | \end{methoddesc}
|
|---|
| 370 |
|
|---|
| 371 | \begin{methoddesc}{normalize}{\optional{context}}
|
|---|
| 372 | Normalize the number by stripping the rightmost trailing zeroes and
|
|---|
| 373 | converting any result equal to \constant{Decimal("0")} to
|
|---|
| 374 | \constant{Decimal("0e0")}. Used for producing canonical values for members
|
|---|
| 375 | of an equivalence class. For example, \code{Decimal("32.100")} and
|
|---|
| 376 | \code{Decimal("0.321000e+2")} both normalize to the equivalent value
|
|---|
| 377 | \code{Decimal("32.1")}.
|
|---|
| 378 | \end{methoddesc}
|
|---|
| 379 |
|
|---|
| 380 | \begin{methoddesc}{quantize}
|
|---|
| 381 | {exp \optional{, rounding\optional{, context\optional{, watchexp}}}}
|
|---|
| 382 | Quantize makes the exponent the same as \var{exp}. Searches for a
|
|---|
| 383 | rounding method in \var{rounding}, then in \var{context}, and then
|
|---|
| 384 | in the current context.
|
|---|
| 385 |
|
|---|
| 386 | If \var{watchexp} is set (default), then an error is returned whenever
|
|---|
| 387 | the resulting exponent is greater than \member{Emax} or less than
|
|---|
| 388 | \member{Etiny}.
|
|---|
| 389 | \end{methoddesc}
|
|---|
| 390 |
|
|---|
| 391 | \begin{methoddesc}{remainder_near}{other\optional{, context}}
|
|---|
| 392 | Computes the modulo as either a positive or negative value depending
|
|---|
| 393 | on which is closest to zero. For instance,
|
|---|
| 394 | \samp{Decimal(10).remainder_near(6)} returns \code{Decimal("-2")}
|
|---|
| 395 | which is closer to zero than \code{Decimal("4")}.
|
|---|
| 396 |
|
|---|
| 397 | If both are equally close, the one chosen will have the same sign
|
|---|
| 398 | as \var{self}.
|
|---|
| 399 | \end{methoddesc}
|
|---|
| 400 |
|
|---|
| 401 | \begin{methoddesc}{same_quantum}{other\optional{, context}}
|
|---|
| 402 | Test whether self and other have the same exponent or whether both
|
|---|
| 403 | are \constant{NaN}.
|
|---|
| 404 | \end{methoddesc}
|
|---|
| 405 |
|
|---|
| 406 | \begin{methoddesc}{sqrt}{\optional{context}}
|
|---|
| 407 | Return the square root to full precision.
|
|---|
| 408 | \end{methoddesc}
|
|---|
| 409 |
|
|---|
| 410 | \begin{methoddesc}{to_eng_string}{\optional{context}}
|
|---|
| 411 | Convert to an engineering-type string.
|
|---|
| 412 |
|
|---|
| 413 | Engineering notation has an exponent which is a multiple of 3, so there
|
|---|
| 414 | are up to 3 digits left of the decimal place. For example, converts
|
|---|
| 415 | \code{Decimal('123E+1')} to \code{Decimal("1.23E+3")}
|
|---|
| 416 | \end{methoddesc}
|
|---|
| 417 |
|
|---|
| 418 | \begin{methoddesc}{to_integral}{\optional{rounding\optional{, context}}}
|
|---|
| 419 | Rounds to the nearest integer without signaling \constant{Inexact}
|
|---|
| 420 | or \constant{Rounded}. If given, applies \var{rounding}; otherwise,
|
|---|
| 421 | uses the rounding method in either the supplied \var{context} or the
|
|---|
| 422 | current context.
|
|---|
| 423 | \end{methoddesc}
|
|---|
| 424 |
|
|---|
| 425 |
|
|---|
| 426 |
|
|---|
| 427 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 428 | \subsection{Context objects \label{decimal-decimal}}
|
|---|
| 429 |
|
|---|
| 430 | Contexts are environments for arithmetic operations. They govern precision,
|
|---|
| 431 | set rules for rounding, determine which signals are treated as exceptions, and
|
|---|
| 432 | limit the range for exponents.
|
|---|
| 433 |
|
|---|
| 434 | Each thread has its own current context which is accessed or changed using
|
|---|
| 435 | the \function{getcontext()} and \function{setcontext()} functions:
|
|---|
| 436 |
|
|---|
| 437 | \begin{funcdesc}{getcontext}{}
|
|---|
| 438 | Return the current context for the active thread.
|
|---|
| 439 | \end{funcdesc}
|
|---|
| 440 |
|
|---|
| 441 | \begin{funcdesc}{setcontext}{c}
|
|---|
| 442 | Set the current context for the active thread to \var{c}.
|
|---|
| 443 | \end{funcdesc}
|
|---|
| 444 |
|
|---|
| 445 | Beginning with Python 2.5, you can also use the \keyword{with} statement
|
|---|
| 446 | and the \function{localcontext()} function to temporarily change the
|
|---|
| 447 | active context.
|
|---|
| 448 |
|
|---|
| 449 | \begin{funcdesc}{localcontext}{\optional{c}}
|
|---|
| 450 | Return a context manager that will set the current context for
|
|---|
| 451 | the active thread to a copy of \var{c} on entry to the with-statement
|
|---|
| 452 | and restore the previous context when exiting the with-statement. If
|
|---|
| 453 | no context is specified, a copy of the current context is used.
|
|---|
| 454 | \versionadded{2.5}
|
|---|
| 455 |
|
|---|
| 456 | For example, the following code sets the current decimal precision
|
|---|
| 457 | to 42 places, performs a calculation, and then automatically restores
|
|---|
| 458 | the previous context:
|
|---|
| 459 | \begin{verbatim}
|
|---|
| 460 | from __future__ import with_statement
|
|---|
| 461 | from decimal import localcontext
|
|---|
| 462 |
|
|---|
| 463 | with localcontext() as ctx:
|
|---|
| 464 | ctx.prec = 42 # Perform a high precision calculation
|
|---|
| 465 | s = calculate_something()
|
|---|
| 466 | s = +s # Round the final result back to the default precision
|
|---|
| 467 | \end{verbatim}
|
|---|
| 468 | \end{funcdesc}
|
|---|
| 469 |
|
|---|
| 470 | New contexts can also be created using the \class{Context} constructor
|
|---|
| 471 | described below. In addition, the module provides three pre-made
|
|---|
| 472 | contexts:
|
|---|
| 473 |
|
|---|
| 474 | \begin{classdesc*}{BasicContext}
|
|---|
| 475 | This is a standard context defined by the General Decimal Arithmetic
|
|---|
| 476 | Specification. Precision is set to nine. Rounding is set to
|
|---|
| 477 | \constant{ROUND_HALF_UP}. All flags are cleared. All traps are enabled
|
|---|
| 478 | (treated as exceptions) except \constant{Inexact}, \constant{Rounded}, and
|
|---|
| 479 | \constant{Subnormal}.
|
|---|
| 480 |
|
|---|
| 481 | Because many of the traps are enabled, this context is useful for debugging.
|
|---|
| 482 | \end{classdesc*}
|
|---|
| 483 |
|
|---|
| 484 | \begin{classdesc*}{ExtendedContext}
|
|---|
| 485 | This is a standard context defined by the General Decimal Arithmetic
|
|---|
| 486 | Specification. Precision is set to nine. Rounding is set to
|
|---|
| 487 | \constant{ROUND_HALF_EVEN}. All flags are cleared. No traps are enabled
|
|---|
| 488 | (so that exceptions are not raised during computations).
|
|---|
| 489 |
|
|---|
| 490 | Because the trapped are disabled, this context is useful for applications
|
|---|
| 491 | that prefer to have result value of \constant{NaN} or \constant{Infinity}
|
|---|
| 492 | instead of raising exceptions. This allows an application to complete a
|
|---|
| 493 | run in the presence of conditions that would otherwise halt the program.
|
|---|
| 494 | \end{classdesc*}
|
|---|
| 495 |
|
|---|
| 496 | \begin{classdesc*}{DefaultContext}
|
|---|
| 497 | This context is used by the \class{Context} constructor as a prototype for
|
|---|
| 498 | new contexts. Changing a field (such a precision) has the effect of
|
|---|
| 499 | changing the default for new contexts creating by the \class{Context}
|
|---|
| 500 | constructor.
|
|---|
| 501 |
|
|---|
| 502 | This context is most useful in multi-threaded environments. Changing one of
|
|---|
| 503 | the fields before threads are started has the effect of setting system-wide
|
|---|
| 504 | defaults. Changing the fields after threads have started is not recommended
|
|---|
| 505 | as it would require thread synchronization to prevent race conditions.
|
|---|
| 506 |
|
|---|
| 507 | In single threaded environments, it is preferable to not use this context
|
|---|
| 508 | at all. Instead, simply create contexts explicitly as described below.
|
|---|
| 509 |
|
|---|
| 510 | The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled
|
|---|
| 511 | traps for Overflow, InvalidOperation, and DivisionByZero.
|
|---|
| 512 | \end{classdesc*}
|
|---|
| 513 |
|
|---|
| 514 |
|
|---|
| 515 | In addition to the three supplied contexts, new contexts can be created
|
|---|
| 516 | with the \class{Context} constructor.
|
|---|
| 517 |
|
|---|
| 518 | \begin{classdesc}{Context}{prec=None, rounding=None, traps=None,
|
|---|
| 519 | flags=None, Emin=None, Emax=None, capitals=1}
|
|---|
| 520 | Creates a new context. If a field is not specified or is \constant{None},
|
|---|
| 521 | the default values are copied from the \constant{DefaultContext}. If the
|
|---|
| 522 | \var{flags} field is not specified or is \constant{None}, all flags are
|
|---|
| 523 | cleared.
|
|---|
| 524 |
|
|---|
| 525 | The \var{prec} field is a positive integer that sets the precision for
|
|---|
| 526 | arithmetic operations in the context.
|
|---|
| 527 |
|
|---|
| 528 | The \var{rounding} option is one of:
|
|---|
| 529 | \begin{itemize}
|
|---|
| 530 | \item \constant{ROUND_CEILING} (towards \constant{Infinity}),
|
|---|
| 531 | \item \constant{ROUND_DOWN} (towards zero),
|
|---|
| 532 | \item \constant{ROUND_FLOOR} (towards \constant{-Infinity}),
|
|---|
| 533 | \item \constant{ROUND_HALF_DOWN} (to nearest with ties going towards zero),
|
|---|
| 534 | \item \constant{ROUND_HALF_EVEN} (to nearest with ties going to nearest even integer),
|
|---|
| 535 | \item \constant{ROUND_HALF_UP} (to nearest with ties going away from zero), or
|
|---|
| 536 | \item \constant{ROUND_UP} (away from zero).
|
|---|
| 537 | \end{itemize}
|
|---|
| 538 |
|
|---|
| 539 | The \var{traps} and \var{flags} fields list any signals to be set.
|
|---|
| 540 | Generally, new contexts should only set traps and leave the flags clear.
|
|---|
| 541 |
|
|---|
| 542 | The \var{Emin} and \var{Emax} fields are integers specifying the outer
|
|---|
| 543 | limits allowable for exponents.
|
|---|
| 544 |
|
|---|
| 545 | The \var{capitals} field is either \constant{0} or \constant{1} (the
|
|---|
| 546 | default). If set to \constant{1}, exponents are printed with a capital
|
|---|
| 547 | \constant{E}; otherwise, a lowercase \constant{e} is used:
|
|---|
| 548 | \constant{Decimal('6.02e+23')}.
|
|---|
| 549 | \end{classdesc}
|
|---|
| 550 |
|
|---|
| 551 | The \class{Context} class defines several general purpose methods as well as a
|
|---|
| 552 | large number of methods for doing arithmetic directly in a given context.
|
|---|
| 553 |
|
|---|
| 554 | \begin{methoddesc}{clear_flags}{}
|
|---|
| 555 | Resets all of the flags to \constant{0}.
|
|---|
| 556 | \end{methoddesc}
|
|---|
| 557 |
|
|---|
| 558 | \begin{methoddesc}{copy}{}
|
|---|
| 559 | Return a duplicate of the context.
|
|---|
| 560 | \end{methoddesc}
|
|---|
| 561 |
|
|---|
| 562 | \begin{methoddesc}{create_decimal}{num}
|
|---|
| 563 | Creates a new Decimal instance from \var{num} but using \var{self} as
|
|---|
| 564 | context. Unlike the \class{Decimal} constructor, the context precision,
|
|---|
| 565 | rounding method, flags, and traps are applied to the conversion.
|
|---|
| 566 |
|
|---|
| 567 | This is useful because constants are often given to a greater precision than
|
|---|
| 568 | is needed by the application. Another benefit is that rounding immediately
|
|---|
| 569 | eliminates unintended effects from digits beyond the current precision.
|
|---|
| 570 | In the following example, using unrounded inputs means that adding zero
|
|---|
| 571 | to a sum can change the result:
|
|---|
| 572 |
|
|---|
| 573 | \begin{verbatim}
|
|---|
| 574 | >>> getcontext().prec = 3
|
|---|
| 575 | >>> Decimal("3.4445") + Decimal("1.0023")
|
|---|
| 576 | Decimal("4.45")
|
|---|
| 577 | >>> Decimal("3.4445") + Decimal(0) + Decimal("1.0023")
|
|---|
| 578 | Decimal("4.44")
|
|---|
| 579 | \end{verbatim}
|
|---|
| 580 |
|
|---|
| 581 | \end{methoddesc}
|
|---|
| 582 |
|
|---|
| 583 | \begin{methoddesc}{Etiny}{}
|
|---|
| 584 | Returns a value equal to \samp{Emin - prec + 1} which is the minimum
|
|---|
| 585 | exponent value for subnormal results. When underflow occurs, the
|
|---|
| 586 | exponent is set to \constant{Etiny}.
|
|---|
| 587 | \end{methoddesc}
|
|---|
| 588 |
|
|---|
| 589 | \begin{methoddesc}{Etop}{}
|
|---|
| 590 | Returns a value equal to \samp{Emax - prec + 1}.
|
|---|
| 591 | \end{methoddesc}
|
|---|
| 592 |
|
|---|
| 593 |
|
|---|
| 594 | The usual approach to working with decimals is to create \class{Decimal}
|
|---|
| 595 | instances and then apply arithmetic operations which take place within the
|
|---|
| 596 | current context for the active thread. An alternate approach is to use
|
|---|
| 597 | context methods for calculating within a specific context. The methods are
|
|---|
| 598 | similar to those for the \class{Decimal} class and are only briefly recounted
|
|---|
| 599 | here.
|
|---|
| 600 |
|
|---|
| 601 | \begin{methoddesc}{abs}{x}
|
|---|
| 602 | Returns the absolute value of \var{x}.
|
|---|
| 603 | \end{methoddesc}
|
|---|
| 604 |
|
|---|
| 605 | \begin{methoddesc}{add}{x, y}
|
|---|
| 606 | Return the sum of \var{x} and \var{y}.
|
|---|
| 607 | \end{methoddesc}
|
|---|
| 608 |
|
|---|
| 609 | \begin{methoddesc}{compare}{x, y}
|
|---|
| 610 | Compares values numerically.
|
|---|
| 611 |
|
|---|
| 612 | Like \method{__cmp__()} but returns a decimal instance:
|
|---|
| 613 | \begin{verbatim}
|
|---|
| 614 | a or b is a NaN ==> Decimal("NaN")
|
|---|
| 615 | a < b ==> Decimal("-1")
|
|---|
| 616 | a == b ==> Decimal("0")
|
|---|
| 617 | a > b ==> Decimal("1")
|
|---|
| 618 | \end{verbatim}
|
|---|
| 619 | \end{methoddesc}
|
|---|
| 620 |
|
|---|
| 621 | \begin{methoddesc}{divide}{x, y}
|
|---|
| 622 | Return \var{x} divided by \var{y}.
|
|---|
| 623 | \end{methoddesc}
|
|---|
| 624 |
|
|---|
| 625 | \begin{methoddesc}{divmod}{x, y}
|
|---|
| 626 | Divides two numbers and returns the integer part of the result.
|
|---|
| 627 | \end{methoddesc}
|
|---|
| 628 |
|
|---|
| 629 | \begin{methoddesc}{max}{x, y}
|
|---|
| 630 | Compare two values numerically and return the maximum.
|
|---|
| 631 |
|
|---|
| 632 | If they are numerically equal then the left-hand operand is chosen as the
|
|---|
| 633 | result.
|
|---|
| 634 | \end{methoddesc}
|
|---|
| 635 |
|
|---|
| 636 | \begin{methoddesc}{min}{x, y}
|
|---|
| 637 | Compare two values numerically and return the minimum.
|
|---|
| 638 |
|
|---|
| 639 | If they are numerically equal then the left-hand operand is chosen as the
|
|---|
| 640 | result.
|
|---|
| 641 | \end{methoddesc}
|
|---|
| 642 |
|
|---|
| 643 | \begin{methoddesc}{minus}{x}
|
|---|
| 644 | Minus corresponds to the unary prefix minus operator in Python.
|
|---|
| 645 | \end{methoddesc}
|
|---|
| 646 |
|
|---|
| 647 | \begin{methoddesc}{multiply}{x, y}
|
|---|
| 648 | Return the product of \var{x} and \var{y}.
|
|---|
| 649 | \end{methoddesc}
|
|---|
| 650 |
|
|---|
| 651 | \begin{methoddesc}{normalize}{x}
|
|---|
| 652 | Normalize reduces an operand to its simplest form.
|
|---|
| 653 |
|
|---|
| 654 | Essentially a \method{plus} operation with all trailing zeros removed from
|
|---|
| 655 | the result.
|
|---|
| 656 | \end{methoddesc}
|
|---|
| 657 |
|
|---|
| 658 | \begin{methoddesc}{plus}{x}
|
|---|
| 659 | Plus corresponds to the unary prefix plus operator in Python. This
|
|---|
| 660 | operation applies the context precision and rounding, so it is
|
|---|
| 661 | \emph{not} an identity operation.
|
|---|
| 662 | \end{methoddesc}
|
|---|
| 663 |
|
|---|
| 664 | \begin{methoddesc}{power}{x, y\optional{, modulo}}
|
|---|
| 665 | Return \samp{x ** y} to the \var{modulo} if given.
|
|---|
| 666 |
|
|---|
| 667 | The right-hand operand must be a whole number whose integer part (after any
|
|---|
| 668 | exponent has been applied) has no more than 9 digits and whose fractional
|
|---|
| 669 | part (if any) is all zeros before any rounding. The operand may be positive,
|
|---|
| 670 | negative, or zero; if negative, the absolute value of the power is used, and
|
|---|
| 671 | the left-hand operand is inverted (divided into 1) before use.
|
|---|
| 672 |
|
|---|
| 673 | If the increased precision needed for the intermediate calculations exceeds
|
|---|
| 674 | the capabilities of the implementation then an \constant{InvalidOperation}
|
|---|
| 675 | condition is signaled.
|
|---|
| 676 |
|
|---|
| 677 | If, when raising to a negative power, an underflow occurs during the
|
|---|
| 678 | division into 1, the operation is not halted at that point but continues.
|
|---|
| 679 | \end{methoddesc}
|
|---|
| 680 |
|
|---|
| 681 | \begin{methoddesc}{quantize}{x, y}
|
|---|
| 682 | Returns a value equal to \var{x} after rounding and having the exponent of
|
|---|
| 683 | \var{y}.
|
|---|
| 684 |
|
|---|
| 685 | Unlike other operations, if the length of the coefficient after the quantize
|
|---|
| 686 | operation would be greater than precision, then an
|
|---|
| 687 | \constant{InvalidOperation} is signaled. This guarantees that, unless there
|
|---|
| 688 | is an error condition, the quantized exponent is always equal to that of the
|
|---|
| 689 | right-hand operand.
|
|---|
| 690 |
|
|---|
| 691 | Also unlike other operations, quantize never signals Underflow, even
|
|---|
| 692 | if the result is subnormal and inexact.
|
|---|
| 693 | \end{methoddesc}
|
|---|
| 694 |
|
|---|
| 695 | \begin{methoddesc}{remainder}{x, y}
|
|---|
| 696 | Returns the remainder from integer division.
|
|---|
| 697 |
|
|---|
| 698 | The sign of the result, if non-zero, is the same as that of the original
|
|---|
| 699 | dividend.
|
|---|
| 700 | \end{methoddesc}
|
|---|
| 701 |
|
|---|
| 702 | \begin{methoddesc}{remainder_near}{x, y}
|
|---|
| 703 | Computed the modulo as either a positive or negative value depending
|
|---|
| 704 | on which is closest to zero. For instance,
|
|---|
| 705 | \samp{Decimal(10).remainder_near(6)} returns \code{Decimal("-2")}
|
|---|
| 706 | which is closer to zero than \code{Decimal("4")}.
|
|---|
| 707 |
|
|---|
| 708 | If both are equally close, the one chosen will have the same sign
|
|---|
| 709 | as \var{self}.
|
|---|
| 710 | \end{methoddesc}
|
|---|
| 711 |
|
|---|
| 712 | \begin{methoddesc}{same_quantum}{x, y}
|
|---|
| 713 | Test whether \var{x} and \var{y} have the same exponent or whether both are
|
|---|
| 714 | \constant{NaN}.
|
|---|
| 715 | \end{methoddesc}
|
|---|
| 716 |
|
|---|
| 717 | \begin{methoddesc}{sqrt}{x}
|
|---|
| 718 | Return the square root of \var{x} to full precision.
|
|---|
| 719 | \end{methoddesc}
|
|---|
| 720 |
|
|---|
| 721 | \begin{methoddesc}{subtract}{x, y}
|
|---|
| 722 | Return the difference between \var{x} and \var{y}.
|
|---|
| 723 | \end{methoddesc}
|
|---|
| 724 |
|
|---|
| 725 | \begin{methoddesc}{to_eng_string}{}
|
|---|
| 726 | Convert to engineering-type string.
|
|---|
| 727 |
|
|---|
| 728 | Engineering notation has an exponent which is a multiple of 3, so there
|
|---|
| 729 | are up to 3 digits left of the decimal place. For example, converts
|
|---|
| 730 | \code{Decimal('123E+1')} to \code{Decimal("1.23E+3")}
|
|---|
| 731 | \end{methoddesc}
|
|---|
| 732 |
|
|---|
| 733 | \begin{methoddesc}{to_integral}{x}
|
|---|
| 734 | Rounds to the nearest integer without signaling \constant{Inexact}
|
|---|
| 735 | or \constant{Rounded}.
|
|---|
| 736 | \end{methoddesc}
|
|---|
| 737 |
|
|---|
| 738 | \begin{methoddesc}{to_sci_string}{x}
|
|---|
| 739 | Converts a number to a string using scientific notation.
|
|---|
| 740 | \end{methoddesc}
|
|---|
| 741 |
|
|---|
| 742 |
|
|---|
| 743 |
|
|---|
| 744 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 745 | \subsection{Signals \label{decimal-signals}}
|
|---|
| 746 |
|
|---|
| 747 | Signals represent conditions that arise during computation.
|
|---|
| 748 | Each corresponds to one context flag and one context trap enabler.
|
|---|
| 749 |
|
|---|
| 750 | The context flag is incremented whenever the condition is encountered.
|
|---|
| 751 | After the computation, flags may be checked for informational
|
|---|
| 752 | purposes (for instance, to determine whether a computation was exact).
|
|---|
| 753 | After checking the flags, be sure to clear all flags before starting
|
|---|
| 754 | the next computation.
|
|---|
| 755 |
|
|---|
| 756 | If the context's trap enabler is set for the signal, then the condition
|
|---|
| 757 | causes a Python exception to be raised. For example, if the
|
|---|
| 758 | \class{DivisionByZero} trap is set, then a \exception{DivisionByZero}
|
|---|
| 759 | exception is raised upon encountering the condition.
|
|---|
| 760 |
|
|---|
| 761 |
|
|---|
| 762 | \begin{classdesc*}{Clamped}
|
|---|
| 763 | Altered an exponent to fit representation constraints.
|
|---|
| 764 |
|
|---|
| 765 | Typically, clamping occurs when an exponent falls outside the context's
|
|---|
| 766 | \member{Emin} and \member{Emax} limits. If possible, the exponent is
|
|---|
| 767 | reduced to fit by adding zeroes to the coefficient.
|
|---|
| 768 | \end{classdesc*}
|
|---|
| 769 |
|
|---|
| 770 | \begin{classdesc*}{DecimalException}
|
|---|
| 771 | Base class for other signals and a subclass of
|
|---|
| 772 | \exception{ArithmeticError}.
|
|---|
| 773 | \end{classdesc*}
|
|---|
| 774 |
|
|---|
| 775 | \begin{classdesc*}{DivisionByZero}
|
|---|
| 776 | Signals the division of a non-infinite number by zero.
|
|---|
| 777 |
|
|---|
| 778 | Can occur with division, modulo division, or when raising a number to a
|
|---|
| 779 | negative power. If this signal is not trapped, returns
|
|---|
| 780 | \constant{Infinity} or \constant{-Infinity} with the sign determined by
|
|---|
| 781 | the inputs to the calculation.
|
|---|
| 782 | \end{classdesc*}
|
|---|
| 783 |
|
|---|
| 784 | \begin{classdesc*}{Inexact}
|
|---|
| 785 | Indicates that rounding occurred and the result is not exact.
|
|---|
| 786 |
|
|---|
| 787 | Signals when non-zero digits were discarded during rounding. The rounded
|
|---|
| 788 | result is returned. The signal flag or trap is used to detect when
|
|---|
| 789 | results are inexact.
|
|---|
| 790 | \end{classdesc*}
|
|---|
| 791 |
|
|---|
| 792 | \begin{classdesc*}{InvalidOperation}
|
|---|
| 793 | An invalid operation was performed.
|
|---|
| 794 |
|
|---|
| 795 | Indicates that an operation was requested that does not make sense.
|
|---|
| 796 | If not trapped, returns \constant{NaN}. Possible causes include:
|
|---|
| 797 |
|
|---|
| 798 | \begin{verbatim}
|
|---|
| 799 | Infinity - Infinity
|
|---|
| 800 | 0 * Infinity
|
|---|
| 801 | Infinity / Infinity
|
|---|
| 802 | x % 0
|
|---|
| 803 | Infinity % x
|
|---|
| 804 | x._rescale( non-integer )
|
|---|
| 805 | sqrt(-x) and x > 0
|
|---|
| 806 | 0 ** 0
|
|---|
| 807 | x ** (non-integer)
|
|---|
| 808 | x ** Infinity
|
|---|
| 809 | \end{verbatim}
|
|---|
| 810 | \end{classdesc*}
|
|---|
| 811 |
|
|---|
| 812 | \begin{classdesc*}{Overflow}
|
|---|
| 813 | Numerical overflow.
|
|---|
| 814 |
|
|---|
| 815 | Indicates the exponent is larger than \member{Emax} after rounding has
|
|---|
| 816 | occurred. If not trapped, the result depends on the rounding mode, either
|
|---|
| 817 | pulling inward to the largest representable finite number or rounding
|
|---|
| 818 | outward to \constant{Infinity}. In either case, \class{Inexact} and
|
|---|
| 819 | \class{Rounded} are also signaled.
|
|---|
| 820 | \end{classdesc*}
|
|---|
| 821 |
|
|---|
| 822 | \begin{classdesc*}{Rounded}
|
|---|
| 823 | Rounding occurred though possibly no information was lost.
|
|---|
| 824 |
|
|---|
| 825 | Signaled whenever rounding discards digits; even if those digits are
|
|---|
| 826 | zero (such as rounding \constant{5.00} to \constant{5.0}). If not
|
|---|
| 827 | trapped, returns the result unchanged. This signal is used to detect
|
|---|
| 828 | loss of significant digits.
|
|---|
| 829 | \end{classdesc*}
|
|---|
| 830 |
|
|---|
| 831 | \begin{classdesc*}{Subnormal}
|
|---|
| 832 | Exponent was lower than \member{Emin} prior to rounding.
|
|---|
| 833 |
|
|---|
| 834 | Occurs when an operation result is subnormal (the exponent is too small).
|
|---|
| 835 | If not trapped, returns the result unchanged.
|
|---|
| 836 | \end{classdesc*}
|
|---|
| 837 |
|
|---|
| 838 | \begin{classdesc*}{Underflow}
|
|---|
| 839 | Numerical underflow with result rounded to zero.
|
|---|
| 840 |
|
|---|
| 841 | Occurs when a subnormal result is pushed to zero by rounding.
|
|---|
| 842 | \class{Inexact} and \class{Subnormal} are also signaled.
|
|---|
| 843 | \end{classdesc*}
|
|---|
| 844 |
|
|---|
| 845 | The following table summarizes the hierarchy of signals:
|
|---|
| 846 |
|
|---|
| 847 | \begin{verbatim}
|
|---|
| 848 | exceptions.ArithmeticError(exceptions.StandardError)
|
|---|
| 849 | DecimalException
|
|---|
| 850 | Clamped
|
|---|
| 851 | DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
|
|---|
| 852 | Inexact
|
|---|
| 853 | Overflow(Inexact, Rounded)
|
|---|
| 854 | Underflow(Inexact, Rounded, Subnormal)
|
|---|
| 855 | InvalidOperation
|
|---|
| 856 | Rounded
|
|---|
| 857 | Subnormal
|
|---|
| 858 | \end{verbatim}
|
|---|
| 859 |
|
|---|
| 860 |
|
|---|
| 861 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 862 | \subsection{Floating Point Notes \label{decimal-notes}}
|
|---|
| 863 |
|
|---|
| 864 | \subsubsection{Mitigating round-off error with increased precision}
|
|---|
| 865 |
|
|---|
| 866 | The use of decimal floating point eliminates decimal representation error
|
|---|
| 867 | (making it possible to represent \constant{0.1} exactly); however, some
|
|---|
| 868 | operations can still incur round-off error when non-zero digits exceed the
|
|---|
| 869 | fixed precision.
|
|---|
| 870 |
|
|---|
| 871 | The effects of round-off error can be amplified by the addition or subtraction
|
|---|
| 872 | of nearly offsetting quantities resulting in loss of significance. Knuth
|
|---|
| 873 | provides two instructive examples where rounded floating point arithmetic with
|
|---|
| 874 | insufficient precision causes the breakdown of the associative and
|
|---|
| 875 | distributive properties of addition:
|
|---|
| 876 |
|
|---|
| 877 | \begin{verbatim}
|
|---|
| 878 | # Examples from Seminumerical Algorithms, Section 4.2.2.
|
|---|
| 879 | >>> from decimal import Decimal, getcontext
|
|---|
| 880 | >>> getcontext().prec = 8
|
|---|
| 881 |
|
|---|
| 882 | >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
|
|---|
| 883 | >>> (u + v) + w
|
|---|
| 884 | Decimal("9.5111111")
|
|---|
| 885 | >>> u + (v + w)
|
|---|
| 886 | Decimal("10")
|
|---|
| 887 |
|
|---|
| 888 | >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
|
|---|
| 889 | >>> (u*v) + (u*w)
|
|---|
| 890 | Decimal("0.01")
|
|---|
| 891 | >>> u * (v+w)
|
|---|
| 892 | Decimal("0.0060000")
|
|---|
| 893 | \end{verbatim}
|
|---|
| 894 |
|
|---|
| 895 | The \module{decimal} module makes it possible to restore the identities
|
|---|
| 896 | by expanding the precision sufficiently to avoid loss of significance:
|
|---|
| 897 |
|
|---|
| 898 | \begin{verbatim}
|
|---|
| 899 | >>> getcontext().prec = 20
|
|---|
| 900 | >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
|
|---|
| 901 | >>> (u + v) + w
|
|---|
| 902 | Decimal("9.51111111")
|
|---|
| 903 | >>> u + (v + w)
|
|---|
| 904 | Decimal("9.51111111")
|
|---|
| 905 | >>>
|
|---|
| 906 | >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
|
|---|
| 907 | >>> (u*v) + (u*w)
|
|---|
| 908 | Decimal("0.0060000")
|
|---|
| 909 | >>> u * (v+w)
|
|---|
| 910 | Decimal("0.0060000")
|
|---|
| 911 | \end{verbatim}
|
|---|
| 912 |
|
|---|
| 913 | \subsubsection{Special values}
|
|---|
| 914 |
|
|---|
| 915 | The number system for the \module{decimal} module provides special
|
|---|
| 916 | values including \constant{NaN}, \constant{sNaN}, \constant{-Infinity},
|
|---|
| 917 | \constant{Infinity}, and two zeroes, \constant{+0} and \constant{-0}.
|
|---|
| 918 |
|
|---|
| 919 | Infinities can be constructed directly with: \code{Decimal('Infinity')}. Also,
|
|---|
| 920 | they can arise from dividing by zero when the \exception{DivisionByZero}
|
|---|
| 921 | signal is not trapped. Likewise, when the \exception{Overflow} signal is not
|
|---|
| 922 | trapped, infinity can result from rounding beyond the limits of the largest
|
|---|
| 923 | representable number.
|
|---|
| 924 |
|
|---|
| 925 | The infinities are signed (affine) and can be used in arithmetic operations
|
|---|
| 926 | where they get treated as very large, indeterminate numbers. For instance,
|
|---|
| 927 | adding a constant to infinity gives another infinite result.
|
|---|
| 928 |
|
|---|
| 929 | Some operations are indeterminate and return \constant{NaN}, or if the
|
|---|
| 930 | \exception{InvalidOperation} signal is trapped, raise an exception. For
|
|---|
| 931 | example, \code{0/0} returns \constant{NaN} which means ``not a number''. This
|
|---|
| 932 | variety of \constant{NaN} is quiet and, once created, will flow through other
|
|---|
| 933 | computations always resulting in another \constant{NaN}. This behavior can be
|
|---|
| 934 | useful for a series of computations that occasionally have missing inputs ---
|
|---|
| 935 | it allows the calculation to proceed while flagging specific results as
|
|---|
| 936 | invalid.
|
|---|
| 937 |
|
|---|
| 938 | A variant is \constant{sNaN} which signals rather than remaining quiet
|
|---|
| 939 | after every operation. This is a useful return value when an invalid
|
|---|
| 940 | result needs to interrupt a calculation for special handling.
|
|---|
| 941 |
|
|---|
| 942 | The signed zeros can result from calculations that underflow.
|
|---|
| 943 | They keep the sign that would have resulted if the calculation had
|
|---|
| 944 | been carried out to greater precision. Since their magnitude is
|
|---|
| 945 | zero, both positive and negative zeros are treated as equal and their
|
|---|
| 946 | sign is informational.
|
|---|
| 947 |
|
|---|
| 948 | In addition to the two signed zeros which are distinct yet equal,
|
|---|
| 949 | there are various representations of zero with differing precisions
|
|---|
| 950 | yet equivalent in value. This takes a bit of getting used to. For
|
|---|
| 951 | an eye accustomed to normalized floating point representations, it
|
|---|
| 952 | is not immediately obvious that the following calculation returns
|
|---|
| 953 | a value equal to zero:
|
|---|
| 954 |
|
|---|
| 955 | \begin{verbatim}
|
|---|
| 956 | >>> 1 / Decimal('Infinity')
|
|---|
| 957 | Decimal("0E-1000000026")
|
|---|
| 958 | \end{verbatim}
|
|---|
| 959 |
|
|---|
| 960 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 961 | \subsection{Working with threads \label{decimal-threads}}
|
|---|
| 962 |
|
|---|
| 963 | The \function{getcontext()} function accesses a different \class{Context}
|
|---|
| 964 | object for each thread. Having separate thread contexts means that threads
|
|---|
| 965 | may make changes (such as \code{getcontext.prec=10}) without interfering with
|
|---|
| 966 | other threads.
|
|---|
| 967 |
|
|---|
| 968 | Likewise, the \function{setcontext()} function automatically assigns its target
|
|---|
| 969 | to the current thread.
|
|---|
| 970 |
|
|---|
| 971 | If \function{setcontext()} has not been called before \function{getcontext()},
|
|---|
| 972 | then \function{getcontext()} will automatically create a new context for use
|
|---|
| 973 | in the current thread.
|
|---|
| 974 |
|
|---|
| 975 | The new context is copied from a prototype context called
|
|---|
| 976 | \var{DefaultContext}. To control the defaults so that each thread will use the
|
|---|
| 977 | same values throughout the application, directly modify the
|
|---|
| 978 | \var{DefaultContext} object. This should be done \emph{before} any threads are
|
|---|
| 979 | started so that there won't be a race condition between threads calling
|
|---|
| 980 | \function{getcontext()}. For example:
|
|---|
| 981 |
|
|---|
| 982 | \begin{verbatim}
|
|---|
| 983 | # Set applicationwide defaults for all threads about to be launched
|
|---|
| 984 | DefaultContext.prec = 12
|
|---|
| 985 | DefaultContext.rounding = ROUND_DOWN
|
|---|
| 986 | DefaultContext.traps = ExtendedContext.traps.copy()
|
|---|
| 987 | DefaultContext.traps[InvalidOperation] = 1
|
|---|
| 988 | setcontext(DefaultContext)
|
|---|
| 989 |
|
|---|
| 990 | # Afterwards, the threads can be started
|
|---|
| 991 | t1.start()
|
|---|
| 992 | t2.start()
|
|---|
| 993 | t3.start()
|
|---|
| 994 | . . .
|
|---|
| 995 | \end{verbatim}
|
|---|
| 996 |
|
|---|
| 997 |
|
|---|
| 998 |
|
|---|
| 999 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 1000 | \subsection{Recipes \label{decimal-recipes}}
|
|---|
| 1001 |
|
|---|
| 1002 | Here are a few recipes that serve as utility functions and that demonstrate
|
|---|
| 1003 | ways to work with the \class{Decimal} class:
|
|---|
| 1004 |
|
|---|
| 1005 | \begin{verbatim}
|
|---|
| 1006 | def moneyfmt(value, places=2, curr='', sep=',', dp='.',
|
|---|
| 1007 | pos='', neg='-', trailneg=''):
|
|---|
| 1008 | """Convert Decimal to a money formatted string.
|
|---|
| 1009 |
|
|---|
| 1010 | places: required number of places after the decimal point
|
|---|
| 1011 | curr: optional currency symbol before the sign (may be blank)
|
|---|
| 1012 | sep: optional grouping separator (comma, period, space, or blank)
|
|---|
| 1013 | dp: decimal point indicator (comma or period)
|
|---|
| 1014 | only specify as blank when places is zero
|
|---|
| 1015 | pos: optional sign for positive numbers: '+', space or blank
|
|---|
| 1016 | neg: optional sign for negative numbers: '-', '(', space or blank
|
|---|
| 1017 | trailneg:optional trailing minus indicator: '-', ')', space or blank
|
|---|
| 1018 |
|
|---|
| 1019 | >>> d = Decimal('-1234567.8901')
|
|---|
| 1020 | >>> moneyfmt(d, curr='$')
|
|---|
| 1021 | '-$1,234,567.89'
|
|---|
| 1022 | >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
|
|---|
| 1023 | '1.234.568-'
|
|---|
| 1024 | >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
|
|---|
| 1025 | '($1,234,567.89)'
|
|---|
| 1026 | >>> moneyfmt(Decimal(123456789), sep=' ')
|
|---|
| 1027 | '123 456 789.00'
|
|---|
| 1028 | >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
|
|---|
| 1029 | '<.02>'
|
|---|
| 1030 |
|
|---|
| 1031 | """
|
|---|
| 1032 | q = Decimal((0, (1,), -places)) # 2 places --> '0.01'
|
|---|
| 1033 | sign, digits, exp = value.quantize(q).as_tuple()
|
|---|
| 1034 | assert exp == -places
|
|---|
| 1035 | result = []
|
|---|
| 1036 | digits = map(str, digits)
|
|---|
| 1037 | build, next = result.append, digits.pop
|
|---|
| 1038 | if sign:
|
|---|
| 1039 | build(trailneg)
|
|---|
| 1040 | for i in range(places):
|
|---|
| 1041 | if digits:
|
|---|
| 1042 | build(next())
|
|---|
| 1043 | else:
|
|---|
| 1044 | build('0')
|
|---|
| 1045 | build(dp)
|
|---|
| 1046 | i = 0
|
|---|
| 1047 | while digits:
|
|---|
| 1048 | build(next())
|
|---|
| 1049 | i += 1
|
|---|
| 1050 | if i == 3 and digits:
|
|---|
| 1051 | i = 0
|
|---|
| 1052 | build(sep)
|
|---|
| 1053 | build(curr)
|
|---|
| 1054 | if sign:
|
|---|
| 1055 | build(neg)
|
|---|
| 1056 | else:
|
|---|
| 1057 | build(pos)
|
|---|
| 1058 | result.reverse()
|
|---|
| 1059 | return ''.join(result)
|
|---|
| 1060 |
|
|---|
| 1061 | def pi():
|
|---|
| 1062 | """Compute Pi to the current precision.
|
|---|
| 1063 |
|
|---|
| 1064 | >>> print pi()
|
|---|
| 1065 | 3.141592653589793238462643383
|
|---|
| 1066 |
|
|---|
| 1067 | """
|
|---|
| 1068 | getcontext().prec += 2 # extra digits for intermediate steps
|
|---|
| 1069 | three = Decimal(3) # substitute "three=3.0" for regular floats
|
|---|
| 1070 | lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
|
|---|
| 1071 | while s != lasts:
|
|---|
| 1072 | lasts = s
|
|---|
| 1073 | n, na = n+na, na+8
|
|---|
| 1074 | d, da = d+da, da+32
|
|---|
| 1075 | t = (t * n) / d
|
|---|
| 1076 | s += t
|
|---|
| 1077 | getcontext().prec -= 2
|
|---|
| 1078 | return +s # unary plus applies the new precision
|
|---|
| 1079 |
|
|---|
| 1080 | def exp(x):
|
|---|
| 1081 | """Return e raised to the power of x. Result type matches input type.
|
|---|
| 1082 |
|
|---|
| 1083 | >>> print exp(Decimal(1))
|
|---|
| 1084 | 2.718281828459045235360287471
|
|---|
| 1085 | >>> print exp(Decimal(2))
|
|---|
| 1086 | 7.389056098930650227230427461
|
|---|
| 1087 | >>> print exp(2.0)
|
|---|
| 1088 | 7.38905609893
|
|---|
| 1089 | >>> print exp(2+0j)
|
|---|
| 1090 | (7.38905609893+0j)
|
|---|
| 1091 |
|
|---|
| 1092 | """
|
|---|
| 1093 | getcontext().prec += 2
|
|---|
| 1094 | i, lasts, s, fact, num = 0, 0, 1, 1, 1
|
|---|
| 1095 | while s != lasts:
|
|---|
| 1096 | lasts = s
|
|---|
| 1097 | i += 1
|
|---|
| 1098 | fact *= i
|
|---|
| 1099 | num *= x
|
|---|
| 1100 | s += num / fact
|
|---|
| 1101 | getcontext().prec -= 2
|
|---|
| 1102 | return +s
|
|---|
| 1103 |
|
|---|
| 1104 | def cos(x):
|
|---|
| 1105 | """Return the cosine of x as measured in radians.
|
|---|
| 1106 |
|
|---|
| 1107 | >>> print cos(Decimal('0.5'))
|
|---|
| 1108 | 0.8775825618903727161162815826
|
|---|
| 1109 | >>> print cos(0.5)
|
|---|
| 1110 | 0.87758256189
|
|---|
| 1111 | >>> print cos(0.5+0j)
|
|---|
| 1112 | (0.87758256189+0j)
|
|---|
| 1113 |
|
|---|
| 1114 | """
|
|---|
| 1115 | getcontext().prec += 2
|
|---|
| 1116 | i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
|
|---|
| 1117 | while s != lasts:
|
|---|
| 1118 | lasts = s
|
|---|
| 1119 | i += 2
|
|---|
| 1120 | fact *= i * (i-1)
|
|---|
| 1121 | num *= x * x
|
|---|
| 1122 | sign *= -1
|
|---|
| 1123 | s += num / fact * sign
|
|---|
| 1124 | getcontext().prec -= 2
|
|---|
| 1125 | return +s
|
|---|
| 1126 |
|
|---|
| 1127 | def sin(x):
|
|---|
| 1128 | """Return the sine of x as measured in radians.
|
|---|
| 1129 |
|
|---|
| 1130 | >>> print sin(Decimal('0.5'))
|
|---|
| 1131 | 0.4794255386042030002732879352
|
|---|
| 1132 | >>> print sin(0.5)
|
|---|
| 1133 | 0.479425538604
|
|---|
| 1134 | >>> print sin(0.5+0j)
|
|---|
| 1135 | (0.479425538604+0j)
|
|---|
| 1136 |
|
|---|
| 1137 | """
|
|---|
| 1138 | getcontext().prec += 2
|
|---|
| 1139 | i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
|
|---|
| 1140 | while s != lasts:
|
|---|
| 1141 | lasts = s
|
|---|
| 1142 | i += 2
|
|---|
| 1143 | fact *= i * (i-1)
|
|---|
| 1144 | num *= x * x
|
|---|
| 1145 | sign *= -1
|
|---|
| 1146 | s += num / fact * sign
|
|---|
| 1147 | getcontext().prec -= 2
|
|---|
| 1148 | return +s
|
|---|
| 1149 |
|
|---|
| 1150 | \end{verbatim}
|
|---|
| 1151 |
|
|---|
| 1152 |
|
|---|
| 1153 |
|
|---|
| 1154 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 1155 | \subsection{Decimal FAQ \label{decimal-faq}}
|
|---|
| 1156 |
|
|---|
| 1157 | Q. It is cumbersome to type \code{decimal.Decimal('1234.5')}. Is there a way
|
|---|
| 1158 | to minimize typing when using the interactive interpreter?
|
|---|
| 1159 |
|
|---|
| 1160 | A. Some users abbreviate the constructor to just a single letter:
|
|---|
| 1161 |
|
|---|
| 1162 | \begin{verbatim}
|
|---|
| 1163 | >>> D = decimal.Decimal
|
|---|
| 1164 | >>> D('1.23') + D('3.45')
|
|---|
| 1165 | Decimal("4.68")
|
|---|
| 1166 | \end{verbatim}
|
|---|
| 1167 |
|
|---|
| 1168 |
|
|---|
| 1169 | Q. In a fixed-point application with two decimal places, some inputs
|
|---|
| 1170 | have many places and need to be rounded. Others are not supposed to have
|
|---|
| 1171 | excess digits and need to be validated. What methods should be used?
|
|---|
| 1172 |
|
|---|
| 1173 | A. The \method{quantize()} method rounds to a fixed number of decimal places.
|
|---|
| 1174 | If the \constant{Inexact} trap is set, it is also useful for validation:
|
|---|
| 1175 |
|
|---|
| 1176 | \begin{verbatim}
|
|---|
| 1177 | >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
|
|---|
| 1178 |
|
|---|
| 1179 | >>> # Round to two places
|
|---|
| 1180 | >>> Decimal("3.214").quantize(TWOPLACES)
|
|---|
| 1181 | Decimal("3.21")
|
|---|
| 1182 |
|
|---|
| 1183 | >>> # Validate that a number does not exceed two places
|
|---|
| 1184 | >>> Decimal("3.21").quantize(TWOPLACES, context=Context(traps=[Inexact]))
|
|---|
| 1185 | Decimal("3.21")
|
|---|
| 1186 |
|
|---|
| 1187 | >>> Decimal("3.214").quantize(TWOPLACES, context=Context(traps=[Inexact]))
|
|---|
| 1188 | Traceback (most recent call last):
|
|---|
| 1189 | ...
|
|---|
| 1190 | Inexact: Changed in rounding
|
|---|
| 1191 | \end{verbatim}
|
|---|
| 1192 |
|
|---|
| 1193 |
|
|---|
| 1194 | Q. Once I have valid two place inputs, how do I maintain that invariant
|
|---|
| 1195 | throughout an application?
|
|---|
| 1196 |
|
|---|
| 1197 | A. Some operations like addition and subtraction automatically preserve fixed
|
|---|
| 1198 | point. Others, like multiplication and division, change the number of decimal
|
|---|
| 1199 | places and need to be followed-up with a \method{quantize()} step.
|
|---|
| 1200 |
|
|---|
| 1201 |
|
|---|
| 1202 | Q. There are many ways to express the same value. The numbers
|
|---|
| 1203 | \constant{200}, \constant{200.000}, \constant{2E2}, and \constant{.02E+4} all
|
|---|
| 1204 | have the same value at various precisions. Is there a way to transform them to
|
|---|
| 1205 | a single recognizable canonical value?
|
|---|
| 1206 |
|
|---|
| 1207 | A. The \method{normalize()} method maps all equivalent values to a single
|
|---|
| 1208 | representative:
|
|---|
| 1209 |
|
|---|
| 1210 | \begin{verbatim}
|
|---|
| 1211 | >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
|
|---|
| 1212 | >>> [v.normalize() for v in values]
|
|---|
| 1213 | [Decimal("2E+2"), Decimal("2E+2"), Decimal("2E+2"), Decimal("2E+2")]
|
|---|
| 1214 | \end{verbatim}
|
|---|
| 1215 |
|
|---|
| 1216 |
|
|---|
| 1217 | Q. Some decimal values always print with exponential notation. Is there
|
|---|
| 1218 | a way to get a non-exponential representation?
|
|---|
| 1219 |
|
|---|
| 1220 | A. For some values, exponential notation is the only way to express
|
|---|
| 1221 | the number of significant places in the coefficient. For example,
|
|---|
| 1222 | expressing \constant{5.0E+3} as \constant{5000} keeps the value
|
|---|
| 1223 | constant but cannot show the original's two-place significance.
|
|---|
| 1224 |
|
|---|
| 1225 |
|
|---|
| 1226 | Q. Is there a way to convert a regular float to a \class{Decimal}?
|
|---|
| 1227 |
|
|---|
| 1228 | A. Yes, all binary floating point numbers can be exactly expressed as a
|
|---|
| 1229 | Decimal. An exact conversion may take more precision than intuition would
|
|---|
| 1230 | suggest, so trapping \constant{Inexact} will signal a need for more precision:
|
|---|
| 1231 |
|
|---|
| 1232 | \begin{verbatim}
|
|---|
| 1233 | def floatToDecimal(f):
|
|---|
| 1234 | "Convert a floating point number to a Decimal with no loss of information"
|
|---|
| 1235 | # Transform (exactly) a float to a mantissa (0.5 <= abs(m) < 1.0) and an
|
|---|
| 1236 | # exponent. Double the mantissa until it is an integer. Use the integer
|
|---|
| 1237 | # mantissa and exponent to compute an equivalent Decimal. If this cannot
|
|---|
| 1238 | # be done exactly, then retry with more precision.
|
|---|
| 1239 |
|
|---|
| 1240 | mantissa, exponent = math.frexp(f)
|
|---|
| 1241 | while mantissa != int(mantissa):
|
|---|
| 1242 | mantissa *= 2.0
|
|---|
| 1243 | exponent -= 1
|
|---|
| 1244 | mantissa = int(mantissa)
|
|---|
| 1245 |
|
|---|
| 1246 | oldcontext = getcontext()
|
|---|
| 1247 | setcontext(Context(traps=[Inexact]))
|
|---|
| 1248 | try:
|
|---|
| 1249 | while True:
|
|---|
| 1250 | try:
|
|---|
| 1251 | return mantissa * Decimal(2) ** exponent
|
|---|
| 1252 | except Inexact:
|
|---|
| 1253 | getcontext().prec += 1
|
|---|
| 1254 | finally:
|
|---|
| 1255 | setcontext(oldcontext)
|
|---|
| 1256 | \end{verbatim}
|
|---|
| 1257 |
|
|---|
| 1258 |
|
|---|
| 1259 | Q. Why isn't the \function{floatToDecimal()} routine included in the module?
|
|---|
| 1260 |
|
|---|
| 1261 | A. There is some question about whether it is advisable to mix binary and
|
|---|
| 1262 | decimal floating point. Also, its use requires some care to avoid the
|
|---|
| 1263 | representation issues associated with binary floating point:
|
|---|
| 1264 |
|
|---|
| 1265 | \begin{verbatim}
|
|---|
| 1266 | >>> floatToDecimal(1.1)
|
|---|
| 1267 | Decimal("1.100000000000000088817841970012523233890533447265625")
|
|---|
| 1268 | \end{verbatim}
|
|---|
| 1269 |
|
|---|
| 1270 |
|
|---|
| 1271 | Q. Within a complex calculation, how can I make sure that I haven't gotten a
|
|---|
| 1272 | spurious result because of insufficient precision or rounding anomalies.
|
|---|
| 1273 |
|
|---|
| 1274 | A. The decimal module makes it easy to test results. A best practice is to
|
|---|
| 1275 | re-run calculations using greater precision and with various rounding modes.
|
|---|
| 1276 | Widely differing results indicate insufficient precision, rounding mode
|
|---|
| 1277 | issues, ill-conditioned inputs, or a numerically unstable algorithm.
|
|---|
| 1278 |
|
|---|
| 1279 |
|
|---|
| 1280 | Q. I noticed that context precision is applied to the results of operations
|
|---|
| 1281 | but not to the inputs. Is there anything to watch out for when mixing
|
|---|
| 1282 | values of different precisions?
|
|---|
| 1283 |
|
|---|
| 1284 | A. Yes. The principle is that all values are considered to be exact and so
|
|---|
| 1285 | is the arithmetic on those values. Only the results are rounded. The
|
|---|
| 1286 | advantage for inputs is that ``what you type is what you get''. A
|
|---|
| 1287 | disadvantage is that the results can look odd if you forget that the inputs
|
|---|
| 1288 | haven't been rounded:
|
|---|
| 1289 |
|
|---|
| 1290 | \begin{verbatim}
|
|---|
| 1291 | >>> getcontext().prec = 3
|
|---|
| 1292 | >>> Decimal('3.104') + D('2.104')
|
|---|
| 1293 | Decimal("5.21")
|
|---|
| 1294 | >>> Decimal('3.104') + D('0.000') + D('2.104')
|
|---|
| 1295 | Decimal("5.20")
|
|---|
| 1296 | \end{verbatim}
|
|---|
| 1297 |
|
|---|
| 1298 | The solution is either to increase precision or to force rounding of inputs
|
|---|
| 1299 | using the unary plus operation:
|
|---|
| 1300 |
|
|---|
| 1301 | \begin{verbatim}
|
|---|
| 1302 | >>> getcontext().prec = 3
|
|---|
| 1303 | >>> +Decimal('1.23456789') # unary plus triggers rounding
|
|---|
| 1304 | Decimal("1.23")
|
|---|
| 1305 | \end{verbatim}
|
|---|
| 1306 |
|
|---|
| 1307 | Alternatively, inputs can be rounded upon creation using the
|
|---|
| 1308 | \method{Context.create_decimal()} method:
|
|---|
| 1309 |
|
|---|
| 1310 | \begin{verbatim}
|
|---|
| 1311 | >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
|
|---|
| 1312 | Decimal("1.2345")
|
|---|
| 1313 | \end{verbatim}
|
|---|