source: branches/GNU/src/binutils/include/dis-asm.h@ 609

Last change on this file since 609 was 609, checked in by bird, 22 years ago

binutils v2.14 - offical sources.

  • Property cvs2svn:cvs-rev set to 1.1.1.2
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 14.9 KB
Line 
1/* Interface between the opcode library and its callers.
2
3 Copyright 2001, 2002 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2, or (at your option)
8 any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330,
18 Boston, MA 02111-1307, USA.
19
20 Written by Cygnus Support, 1993.
21
22 The opcode library (libopcodes.a) provides instruction decoders for
23 a large variety of instruction sets, callable with an identical
24 interface, for making instruction-processing programs more independent
25 of the instruction set being processed. */
26
27#ifndef DIS_ASM_H
28#define DIS_ASM_H
29
30#ifdef __cplusplus
31extern "C" {
32#endif
33
34#include <stdio.h>
35#include "bfd.h"
36
37typedef int (*fprintf_ftype) PARAMS((PTR, const char*, ...));
38
39enum dis_insn_type {
40 dis_noninsn, /* Not a valid instruction */
41 dis_nonbranch, /* Not a branch instruction */
42 dis_branch, /* Unconditional branch */
43 dis_condbranch, /* Conditional branch */
44 dis_jsr, /* Jump to subroutine */
45 dis_condjsr, /* Conditional jump to subroutine */
46 dis_dref, /* Data reference instruction */
47 dis_dref2 /* Two data references in instruction */
48};
49
50/* This struct is passed into the instruction decoding routine,
51 and is passed back out into each callback. The various fields are used
52 for conveying information from your main routine into your callbacks,
53 for passing information into the instruction decoders (such as the
54 addresses of the callback functions), or for passing information
55 back from the instruction decoders to their callers.
56
57 It must be initialized before it is first passed; this can be done
58 by hand, or using one of the initialization macros below. */
59
60typedef struct disassemble_info {
61 fprintf_ftype fprintf_func;
62 PTR stream;
63 PTR application_data;
64
65 /* Target description. We could replace this with a pointer to the bfd,
66 but that would require one. There currently isn't any such requirement
67 so to avoid introducing one we record these explicitly. */
68 /* The bfd_flavour. This can be bfd_target_unknown_flavour. */
69 enum bfd_flavour flavour;
70 /* The bfd_arch value. */
71 enum bfd_architecture arch;
72 /* The bfd_mach value. */
73 unsigned long mach;
74 /* Endianness (for bi-endian cpus). Mono-endian cpus can ignore this. */
75 enum bfd_endian endian;
76 /* An arch/mach-specific bitmask of selected instruction subsets, mainly
77 for processors with run-time-switchable instruction sets. The default,
78 zero, means that there is no constraint. CGEN-based opcodes ports
79 may use ISA_foo masks. */
80 unsigned long insn_sets;
81
82 /* Some targets need information about the current section to accurately
83 display insns. If this is NULL, the target disassembler function
84 will have to make its best guess. */
85 asection *section;
86
87 /* An array of pointers to symbols either at the location being disassembled
88 or at the start of the function being disassembled. The array is sorted
89 so that the first symbol is intended to be the one used. The others are
90 present for any misc. purposes. This is not set reliably, but if it is
91 not NULL, it is correct. */
92 asymbol **symbols;
93 /* Number of symbols in array. */
94 int num_symbols;
95
96 /* For use by the disassembler.
97 The top 16 bits are reserved for public use (and are documented here).
98 The bottom 16 bits are for the internal use of the disassembler. */
99 unsigned long flags;
100#define INSN_HAS_RELOC 0x80000000
101 PTR private_data;
102
103 /* Function used to get bytes to disassemble. MEMADDR is the
104 address of the stuff to be disassembled, MYADDR is the address to
105 put the bytes in, and LENGTH is the number of bytes to read.
106 INFO is a pointer to this struct.
107 Returns an errno value or 0 for success. */
108 int (*read_memory_func)
109 PARAMS ((bfd_vma memaddr, bfd_byte *myaddr, unsigned int length,
110 struct disassemble_info *info));
111
112 /* Function which should be called if we get an error that we can't
113 recover from. STATUS is the errno value from read_memory_func and
114 MEMADDR is the address that we were trying to read. INFO is a
115 pointer to this struct. */
116 void (*memory_error_func)
117 PARAMS ((int status, bfd_vma memaddr, struct disassemble_info *info));
118
119 /* Function called to print ADDR. */
120 void (*print_address_func)
121 PARAMS ((bfd_vma addr, struct disassemble_info *info));
122
123 /* Function called to determine if there is a symbol at the given ADDR.
124 If there is, the function returns 1, otherwise it returns 0.
125 This is used by ports which support an overlay manager where
126 the overlay number is held in the top part of an address. In
127 some circumstances we want to include the overlay number in the
128 address, (normally because there is a symbol associated with
129 that address), but sometimes we want to mask out the overlay bits. */
130 int (* symbol_at_address_func)
131 PARAMS ((bfd_vma addr, struct disassemble_info * info));
132
133 /* These are for buffer_read_memory. */
134 bfd_byte *buffer;
135 bfd_vma buffer_vma;
136 unsigned int buffer_length;
137
138 /* This variable may be set by the instruction decoder. It suggests
139 the number of bytes objdump should display on a single line. If
140 the instruction decoder sets this, it should always set it to
141 the same value in order to get reasonable looking output. */
142 int bytes_per_line;
143
144 /* the next two variables control the way objdump displays the raw data */
145 /* For example, if bytes_per_line is 8 and bytes_per_chunk is 4, the */
146 /* output will look like this:
147 00: 00000000 00000000
148 with the chunks displayed according to "display_endian". */
149 int bytes_per_chunk;
150 enum bfd_endian display_endian;
151
152 /* Number of octets per incremented target address
153 Normally one, but some DSPs have byte sizes of 16 or 32 bits. */
154 unsigned int octets_per_byte;
155
156 /* Results from instruction decoders. Not all decoders yet support
157 this information. This info is set each time an instruction is
158 decoded, and is only valid for the last such instruction.
159
160 To determine whether this decoder supports this information, set
161 insn_info_valid to 0, decode an instruction, then check it. */
162
163 char insn_info_valid; /* Branch info has been set. */
164 char branch_delay_insns; /* How many sequential insn's will run before
165 a branch takes effect. (0 = normal) */
166 char data_size; /* Size of data reference in insn, in bytes */
167 enum dis_insn_type insn_type; /* Type of instruction */
168 bfd_vma target; /* Target address of branch or dref, if known;
169 zero if unknown. */
170 bfd_vma target2; /* Second target address for dref2 */
171
172 /* Command line options specific to the target disassembler. */
173 char * disassembler_options;
174
175} disassemble_info;
176
177
178
179/* Standard disassemblers. Disassemble one instruction at the given
180 target address. Return number of octets processed. */
181typedef int (*disassembler_ftype)
182 PARAMS((bfd_vma, disassemble_info *));
183
184extern int print_insn_big_mips PARAMS ((bfd_vma, disassemble_info*));
185extern int print_insn_little_mips PARAMS ((bfd_vma, disassemble_info*));
186extern int print_insn_i386 PARAMS ((bfd_vma, disassemble_info *));
187extern int print_insn_i386_att PARAMS ((bfd_vma, disassemble_info*));
188extern int print_insn_i386_intel PARAMS ((bfd_vma, disassemble_info*));
189extern int print_insn_ia64 PARAMS ((bfd_vma, disassemble_info*));
190extern int print_insn_i370 PARAMS ((bfd_vma, disassemble_info*));
191extern int print_insn_m68hc11 PARAMS ((bfd_vma, disassemble_info*));
192extern int print_insn_m68hc12 PARAMS ((bfd_vma, disassemble_info*));
193extern int print_insn_m68k PARAMS ((bfd_vma, disassemble_info*));
194extern int print_insn_z8001 PARAMS ((bfd_vma, disassemble_info*));
195extern int print_insn_z8002 PARAMS ((bfd_vma, disassemble_info*));
196extern int print_insn_h8300 PARAMS ((bfd_vma, disassemble_info*));
197extern int print_insn_h8300h PARAMS ((bfd_vma, disassemble_info*));
198extern int print_insn_h8300s PARAMS ((bfd_vma, disassemble_info*));