`); SciPySciPy Installing User Guide API reference Building from source Development Release notes GitHubGitHub TwitterTwitter Installing User Guide API reference Building from source Development Release notes GitHubGitHub TwitterTwitterSection Navigationscipyscipy.clusterscipy.constantsscipy.datasetsscipy.differentiatescipy.fftscipy.fftpackscipy.integratescipy.interpolatescipy.ioscipy.linalgscipy.ndimagescipy.odrscipy.optimizescipy.signalscipy.sparsescipy.spatialscipy.specialscipy.st..." />`); SciPySciPy Installing User Guide API reference Building from source Development Release notes GitHubGitHub TwitterTwitter Installing User Guide API reference Building from source Development Release notes GitHubGitHub TwitterTwitterSection Navigationscipyscipy.clusterscipy.constantsscipy.datasetsscipy.differentiatescipy.fftscipy.fftpackscipy.integratescipy.interpolatescipy.ioscipy.linalgscipy.ndimagescipy.odrscipy.optimizescipy.signalscipy.sparsescipy.spatialscipy.specialscipy.st..." /> minimize(method=’trust-krylov’) — SciPy v1.15.3 Manual

minimize(method=’trust-krylov’)#

scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)

Minimization of a scalar function of one or more variables using a nearly exact trust-region algorithm that only requires matrix vector products with the hessian matrix.

Added in version 1.0.0.

See also

For documentation for the rest of the parameters, see scipy.optimize.minimize

Options:
——-
inexactbool, optional

Accuracy to solve subproblems. If True requires less nonlinear iterations, but more vector products.